Solution

QUESTION BANK

Class 09 - Mathematics

1. (b) 155°

Explanation:

Let angles of a triangle be $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$.

In $\triangle \mathrm{ABC}$,
$\angle A+\angle B+\angle C=180^{\circ}$ [sum of all interior angles of a triangle is 180°]
$\Rightarrow \frac{1}{2} \angle A+\frac{1}{2} \angle B+\frac{1}{2} \angle C=\frac{180^{\circ}}{2}=90^{\circ} \quad$ [dividing both sides by 2]
$\Rightarrow \frac{1}{2} \angle B+\frac{1}{2} \angle C=90^{\circ}-\frac{1}{2} \angle A \quad\left[\because\right.$ In $\left.\triangle \mathrm{OBC}, \angle \mathrm{OBC}+\angle \mathrm{BCO}+\angle \mathrm{COB}=180^{\circ}\right]$
\Rightarrow Since, $\frac{\angle B}{2}+\frac{\angle C}{2}+\angle B O C=180^{\circ}$ as BO and OC are the angle bisectors of $\angle \mathrm{ABC}$ and $\angle \mathrm{BCA}$, respectively
$\Rightarrow 180^{\circ}-\angle B O C=90^{\circ}-\frac{1}{2} \angle A$
$\therefore \angle \mathrm{BOC}=180^{\circ}-90^{\circ}+\frac{1}{2} \angle A$
$=90^{\circ}+\frac{1}{2} \times 130^{\circ}=90^{\circ}+65^{\circ}\left[\therefore \angle \mathrm{A}=130^{\circ}\right.$ (given) $]$
$=155^{\circ}$
Hence, the required angle is 155°.
2. (a) 75°

Explanation: Let the measure of the required angle be x°
Then, the measure of its complement will be $(90-x)^{\circ}$
$\therefore \mathrm{x}=5(90-\mathrm{x})$
$\Rightarrow \mathrm{x}=450-5 \mathrm{x}$
$\Rightarrow 6 \mathrm{x}=450$
$\Rightarrow \mathrm{x}=75^{\circ}$
3. (a) 54°

Explanation: Let the measure of the required angle be x°
Then, the measure of its complement will be $(90-x)^{\circ}$
$\therefore 2 \mathrm{x}=3(90-\mathrm{x})$
$\Rightarrow 2 \mathrm{x}=270-3 \mathrm{x}$
$\Rightarrow 5 \mathrm{x}=270$
$\Rightarrow \mathrm{x}=54^{\circ}$
4. (c) (ii) and (iii) are correct

Explanation: When two straight lines intersect them, Adjacent angles are supplementary and opposite angles are equal.
5. (a) 90°

Explanation: Given that,
AB and CD intersect at O
$\angle A O C+\angle C O B+\angle B O D=270^{\circ}$ (i)
$\angle \mathrm{COB}+\angle \mathrm{BOD}=180^{\circ}$ (Linear pair) (ii)
Using (ii) in (i), we get
$\angle \mathrm{AOC}+180^{\circ}=270^{\circ}$
$\angle \mathrm{AOC}=90^{\circ}$
6. (d) An acute angled triangle

Explanation: Let the angles of the triange be $5 \mathrm{x}, 3 \mathrm{x}$ and 7 x
We know that the sum of the angles of a triangle is 180°
$5 \mathrm{x}+3 \mathrm{x}+7 \mathrm{x}=180^{\circ}$
$15 \mathrm{x}=180^{\circ}$
$\mathrm{x}=12^{0}$
Therefore the angles are
$5 x=5 \times 12^{0}=60^{\circ}$
$3 x=3 \times 12^{0}=36^{0}$
$7 x=7 \times 12^{0}=84^{0}$
Since all the angles are less than 90° there fore it is a acute angled triangle.
7. (d) $12: 3: 2$

Explanation: Let A be x
$B=\frac{1}{4} x$
$C=\frac{1}{6} x$
A: B:C
x: $\frac{1}{4} \mathrm{x}: \frac{1}{6} \mathrm{x}$
LCM of 4 and 6 is 12
12:3:2
8. (a) 117°

Explanation: $\angle \mathrm{BOD}+\angle \mathrm{BOC}=180^{\circ}$ (Linear pair)
$63^{\circ}+\angle B O C=180^{\circ}$
$\angle B O C=117^{\circ}$
9. (d) Straight line

Explanation:

As can be seen from the above diagram, the two planes " P " and " Q " are intersecting in a line, which is AB .
10. (d) 30^{0}

Explanation: Let one angle be x^{0}
Its supplementary angle will be $180^{\circ}-x^{0}$
According to question
$\mathrm{x}=\frac{1}{5}\left(180^{\circ}-\mathrm{x}\right)$
$5 \mathrm{x}+\mathrm{x}=180^{\circ}$
$6 \mathrm{x}=180^{\circ}$
$\mathrm{x}=\frac{180}{6}$
$\mathrm{x}=30^{0}$
11. Supplement of an angle $=180-\mathrm{x}$

Complement of an angle $=90-\mathrm{x}$
According to question,
$180-x=3(90-x)$
$180-\mathrm{x}=270-3 \mathrm{x}$
$-x+3 x=270-180$
$2 \mathrm{x}=90$
$\mathrm{x}=\frac{90}{2}$
$x=45$
12. Let the measure of an angle be x^{0}, then the measure of its complement is also x^{0}.

We know that the sum of the measures of complementary angles is 90°.
Therefore, $x^{0}+x^{0}=90^{\circ}$
$\Rightarrow 2 \mathrm{x}^{0}=90^{\circ}$
$\Rightarrow x^{0}=45^{\circ}$
13. Sum of any two angles equals to 90 degrees then they are called complementary angles

Let one angle $=x$
It's complementary angle $=x+14$
$x+x+14=90$
$2 x=90-14$
$2 x=76$
$\mathrm{x}=\frac{76}{2}$
$\mathrm{x}=38$
One angle $=x=38$
Second angle $=x+14=38+14=52$.
14. Given angle is 138°

Since the sum of an angle and its supplement is 180°
Therefore, its supplement will be:
$180^{\circ}-138^{\circ}=42^{\circ}$
15. Let the angle be x.

Its supplement $=180^{\circ}-\mathrm{x}$
according to question,
$180^{\circ}-\mathrm{x}=\frac{2}{3} \mathrm{x}$
$\Rightarrow 3\left(180^{\circ}-\mathrm{x}\right)=2 \mathrm{x}$
$\Rightarrow 540^{\circ}-3 \mathrm{x}=2 \mathrm{x}$
$\Rightarrow 540^{\circ}=5 x$
$\Rightarrow \mathrm{x}=\frac{540}{5}$
$\Rightarrow \mathrm{x}=108^{\circ}$.
Now, the angle's supplement $=180^{\circ}-x=180^{\circ}-108^{\circ}=72^{\circ}$
Hence, the angle is 108 and its supplement is 72°.
16. Given angle is 20°

Since the sum of an angle and its compliment is 90°
Therefore, its compliment will be:
$90^{\circ}-20^{\circ}=70^{\circ}$
17. Two angles whose sum is 180° are called supplementary angles.

Supplement of $42^{\circ}=180^{\circ}-42^{\circ}=138^{\circ}$
Supplement of $42^{\circ}=138^{\circ}$
18. Let the measure of an angle be x , then measure of its supplement is also x .

Since the sum of supplementary angles is 180°.
$\therefore x+x=180^{\circ} \Rightarrow 2 x=180^{\circ}$
$\Rightarrow \quad x=90^{\circ}$
19. The measure of the supplementary angle $x=\left(180^{\circ}-r^{0}\right)$

Where $r^{0}=$ given measurement
$\therefore \mathrm{x}=\left(180^{\circ}-68^{\circ}\right)=112^{\circ}$
20. Given angle is 54°

Since the sum of an angle and its supplement is 180°
Therefore, its compliment will be:
$180^{\circ}-54^{\circ}=126^{\circ}$
21. The measure of the supplementary angle $x=\left(180^{\circ}-r^{0}\right)$

Where $\mathrm{r}^{\mathrm{o}}=$ given measurement
$\therefore \mathrm{x}=\left(180^{\circ}-125\right)=55^{\circ}$
22. The measure of the complementary angle $x=\left(90^{\circ}-r^{0}\right)$

Where $\mathrm{r}^{\mathrm{o}}=$ given measurement
$\therefore \mathrm{x}=\left(90^{\circ}-72^{\circ}\right)=18^{\circ}$
hence, measure of the complementary angle of $72^{\circ} .=18^{\circ}$
23. Let the measure of the required angle be x°.

Then, the measure of its complement is $(90-\mathrm{x})^{\circ}$.
It is given that
$(90-x)^{\circ}-x^{\circ}=20^{\circ}$
$\Rightarrow 90^{\circ}-2 x^{\circ}=20^{\circ}$
$\Rightarrow-2 x^{\circ}=20^{\circ}-90^{\circ}$
$\Rightarrow-2 \mathrm{x}^{\circ}=-70^{\circ}$
$\Rightarrow \mathrm{x}^{\circ}=35^{\circ}$
Hence, the measure of the angle is 35°
24. Given angle is 30°

Since the sum of an angle and its compliment is 90°
Therefore, its compliment will be,
$90^{\circ}-30^{\circ}=60^{\circ}$
25 . Let x be the angle
then according to the question,
$90-\mathrm{x}=180-3 \mathrm{x}$
$\Rightarrow \mathrm{x}=\frac{90}{2}$
$\therefore \mathrm{x}=45$
26. Since OA and OB are opposite rays.

Therefore, AB is a line. Since ray OC
stands on line AB .
$\therefore \angle \mathrm{AOC}+\angle \mathrm{COB}=180^{\circ}$ [Linear Pairs]
$\Rightarrow \angle \mathrm{AOC}+\angle \mathrm{COD}+\angle \mathrm{BOD}=180^{\circ}[\because \angle \mathrm{COB}=\angle \mathrm{COD}+\angle \mathrm{BOD}]$
$\Rightarrow(\angle \mathrm{AOC}+\angle \mathrm{BOD})+\angle \mathrm{COD}=180^{\circ}$
$\Rightarrow 90^{\circ}+\angle \mathrm{COD}=180^{\circ}\left[\because \angle \mathrm{AOC}+\angle \mathrm{BOD}=90^{\circ}\right.$ Given $\left.)\right]$
$\Rightarrow \angle \mathrm{COD}=180^{\circ}-90^{\circ}=90^{\circ}$.
27. $\mathrm{x}=\mathrm{y}$ (Given)

Therefore, l|| m (Corresponding angles) (i)
Also, $\mathrm{a}=\mathrm{b}$ (Given)
Therefore, $\mathrm{n} \| \mathrm{m}$ (Corresponding angles) (ii)
From (i) and (ii), $1 \| \mathrm{n}$ (Lines parallel to the same line).
28. $\angle \mathrm{BOC}=\angle \mathrm{AOB}+\angle \mathrm{AOC}$
$=90^{\circ}+90^{\circ}=180^{\circ} \ldots$ [Given : $\angle \mathrm{AOB}$ and $\angle \mathrm{AOC}=90^{\circ}$]
\therefore BOD is a line . . [Linear pair axiom]
29. When a ray falls on a mirror, it is reflected and angle of incidence $=$ angle of reflection $=x^{\circ}$ (say).

QM is drawn normal to AB and therefore, we have,
angle of incidence $=\angle \mathrm{PQM}$,
angle of reflection $=\angle \mathrm{MQR}$
and $\angle A Q M=90^{\circ}$

Now,we have, $\angle P Q M+\angle M Q R=\angle P Q R=112^{\circ}$ (given)
$\therefore 2 \angle P Q M=112^{\circ}$
$\therefore \angle P Q M=56^{\circ}$
Therefore, $\angle P Q A=\angle A Q M-\angle P Q M=90^{\circ}-56^{\circ}=34^{\circ}$
30. AOB will be a straight line, if
$\angle A O C+\angle B O C=180^{\circ}$
$\therefore(3 \mathrm{x}+5)^{\circ}+(2 \mathrm{x}-25)^{\circ}=180^{\circ}$
$\Rightarrow 5 \mathrm{x}^{\circ}=200^{\circ} \Rightarrow \mathrm{x}=40^{\circ}$
Therefore, $\mathrm{x}=40^{\circ}$ will make AOB a straight line
31. Given: $A B$ and $C D$ are two lines intersect each other at O.

To prove:
i. $\angle 1=\angle 2$
ii. $\angle 3=\angle 4$

Proof:
$\angle 1+\angle 4=180^{\circ} \ldots$ (i) [By linear pair]
$\angle 4+\angle 2=180^{0}$...(ii) [By linear pair]
$\angle 1+\angle 4=\angle 4+\angle 2$ [By eq (i) and (ii)]
$\angle 1=\angle 2$
Similarly,
$\angle 3=\angle 4$
32. $\angle \mathrm{POC}=\angle \mathrm{DOQ}=2 \mathrm{y} \ldots$. [Vertically opposite angles]
$\angle \mathrm{AOB}=180^{\circ} \ldots \ldots\left[\right.$ A straight angle $\left.=180^{\circ}\right]$
$\angle \mathrm{AOB}+\angle \mathrm{POC}+\angle \mathrm{BOC}=180^{\circ}$
$\angle 5 y+2 y+5 y=180^{\circ}$
$\angle 12 \mathrm{y}=180^{\circ}$
$\angle y=\frac{180^{\circ}}{12}=15^{0}$
33. Let the two complementary angles be 2 x and 3 x .

We know that, sum of complementary angles is 90°.
$\therefore 2 x+3 x=90^{\circ}$
$\Rightarrow 5 x=90^{\circ}$
$\Rightarrow \quad x=18^{\circ}$
\therefore The angles are $2 \times 18^{\circ}=36^{\circ}$ and $3 \times 18^{\circ}=54^{\circ}$.
34. AOB is a straight line. Therefore,by linear pair axiom,
$\angle A O C+\angle C O D+\angle B O D=180^{\circ}$
$\Rightarrow(3 \mathrm{x}+7)^{\circ}+(2 \mathrm{x}-19)^{\circ}+\mathrm{x}^{\circ}=180^{\circ}$
$\Rightarrow 6 \mathrm{x}=192^{\circ}$
$\Rightarrow \mathrm{x}=32^{\circ}$
Therefore,
$\angle A O C=3 \times 32^{\circ}+7=103^{\circ}$
$\angle C O D=2 \times 32^{\circ}-19=45^{\circ}$ and
$\angle B O D=32^{\circ}$
35. $\mathrm{a}+\mathrm{b}=180^{\circ} \ldots$ [Linear pair axiom] . . . (1)
$a-b=80^{\circ} \ldots$ [Given] (2)
$2 \mathrm{a}=180^{\circ}+80^{\circ} \ldots$ [Adding (1) and (2)]
$\therefore 2 \mathrm{a}=260^{\circ}$
$\therefore a=\frac{260^{\circ}}{2}=130^{\circ}$
Subtracting (2) and (1), we get
$\therefore 2 \mathrm{~b}=180^{\circ}-80^{\circ}$
$\therefore 2 \mathrm{~b}=100^{\circ}$
$\therefore b=\frac{100^{\circ}}{2}=50^{0}$
36. Let the two angles be $4 x$ and $5 x$, respectively

Then,
$4 \mathrm{x}^{\circ}+5 \mathrm{x}^{\circ}=90^{\circ}$
$\Rightarrow 9 x^{\circ}=90^{\circ}$
$\Rightarrow \mathrm{x}^{\circ}=10^{\circ}$
Then the two anlges are $4 \mathrm{x}=4 \times 10^{\circ}=40^{\circ}$ and $5 \mathrm{x}=5 \times 10^{\circ}=50^{\circ}$
Therefore, one angle is 40° and its complemetry angle is 50°
37. Here, $\angle \mathrm{AOC}$ and $\angle \mathrm{BOC}$ form a linear pair.
$\therefore \angle \mathrm{AOC}+\angle \mathrm{BOC}=180^{\circ}$
$\Rightarrow \mathrm{x}^{\circ}+125^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{x}^{\circ}=180^{\circ}-125^{\circ}=55^{\circ}$
Now,
$\angle \mathrm{AOD}=\angle \mathrm{BOC}=125^{\circ}$ (Vertically opposite angles)
$\therefore \mathrm{y}^{\circ}=125^{\circ}$
$\angle B O D=\angle A O C=55^{\circ}$ (Vertically opposite angles)
$\therefore \mathrm{z}^{\circ}=55^{\circ}$
38. Let the measure of the required angle be x°

Then, the measure of its complement $=\left(90^{\circ}-x^{\circ}\right)$
And then measure of its supplement $=(180-x)^{\circ}$
given that,
$\left(90^{\circ}-\mathrm{x}^{\circ}\right)=\frac{1}{3}\left(180^{\circ}-\mathrm{x}^{\circ}\right)$
$\Rightarrow 3\left(90^{\circ}-x^{\circ}\right)=\left(180^{\circ}-x^{\circ}\right)$
$\Rightarrow 270^{\circ}-3 x^{\circ}=180^{\circ}-x^{\circ}$
$\Rightarrow 2 x^{\circ}=90^{\circ}$
$\Rightarrow \mathrm{x}^{\circ}=45^{\circ}$
Hence, the measure of the required angle is 45°
39. Given that,
$(2 x-10)^{0}$ and $(x-5)^{0}$ are compliment angles.
Since, angles are complimentary
Therefore,
$(2 \mathrm{x}-10)^{0}+(\mathrm{x}-5)^{0}=90^{0}$
$3 x-15^{\circ}=90^{\circ}$
$\mathrm{x}=35^{\circ}$
40. Let the measure of the required angle be x°,

Then, its complement $=(90-x)^{\circ}$
and its supplement $=(180-x)^{\circ}$.
$\therefore 7\left(90^{\circ}-x^{\circ}\right)=3\left(180^{\circ}-x^{\circ}\right)-10^{\circ}$
$\Rightarrow 630^{\circ}-7 \mathrm{x}^{\circ}=540^{\circ}-3 \mathrm{x}^{\circ}-10^{\circ}$
$\Rightarrow 4 \mathrm{x}^{\circ}=100^{\circ}$
$\Rightarrow \mathrm{x}^{\circ}=25^{\circ}$
Hence, the measure of the required angle is 25°.
41. $A B$ is a line
$\therefore \angle \mathrm{AOB}=180^{\circ}$ (Linear Pair)
$\therefore \angle \mathrm{AOC}+\angle \mathrm{COD}+\angle \mathrm{BOD}=180^{\circ}$ (Linear Pair)
$\therefore(\angle \mathrm{AOC}+\angle \mathrm{BOD})+\angle \mathrm{COD}=180^{\circ}$
$\therefore 70^{\circ}+\angle \mathrm{COD}=180^{\circ} \ldots$ [Given : $\angle \mathrm{AOC}+\angle \mathrm{BOD}=70^{\circ}$]
$\therefore \angle \mathrm{COD}=180^{\circ}-70^{\circ}=110^{\circ}$
42. Draw a ray OP opposite to ray OA

$\angle \mathrm{AOB}+\angle \mathrm{BOC}+\angle \mathrm{COP}=180^{\circ} \ldots$ [A straight angle $\left.=180^{\circ}\right] \ldots$ (1)
$\angle \mathrm{POD}+\angle \mathrm{DOE}+\angle \mathrm{EOA}=180^{\circ} \ldots$ [A straight angle $\left.=180^{\circ}\right] \ldots$ (2)
$\angle \mathrm{AOB}+\angle \mathrm{BOC}+(\angle \mathrm{COP}+\angle \mathrm{POD})+\angle \mathrm{DOE}+\angle \mathrm{EOA}=180^{\circ}+180^{\circ}=360^{\circ}$
$\angle \mathrm{AOB}+\angle \mathrm{BOC}+\angle \mathrm{COD}+\angle \mathrm{DEO}+\angle \mathrm{EOA}=360^{\circ}$
43. We know that total angle on a line is equal to 180°.
$\therefore 2 \mathrm{x}+3 \mathrm{x}+4 \mathrm{x}=180^{\circ}$ (angles on same line)
$\Rightarrow 9 x=180^{\circ}$
$\therefore x=20^{\circ}$.
44. AOB will be a straight line if
$3 x+20+4 x-36=180^{\circ}$
$\Rightarrow 7 \mathrm{x}=196^{\circ}$
$\Rightarrow \mathrm{x}=25^{\circ}$
Therefore, $\mathrm{x}=28$ will make AOB a straight line
45. Since $A O B$ is a straight line, the sum of all the angles on the same side of $A O B$ at a point O on it, is 180°.

Therefore, we have,
$\mathrm{x}^{\circ}+65^{\circ}+(2 \mathrm{x}-20)^{\circ}=180^{\circ}$
$\Rightarrow 3 x^{\circ}=135^{\circ}$
$\Rightarrow \mathrm{x}^{\circ}=45^{\circ}$
$\therefore \angle \mathrm{AOC}=\mathrm{x}^{\circ}=45^{\circ}$ and $\angle \mathrm{BOD}=(2 \times 45-20)^{\circ}=70^{\circ}$
46. Let us produce a ray OQ backwards to a point M , then MOQ is a straight line.

Now, OP is a ray on the line MOQ. Then, by linear pair axiom, we have
$\angle \mathrm{MOP}+\angle \mathrm{POQ}=180^{\circ}$

Similarly, OS is a ray on the line MOQ. Then, by linear pair axiom, we have
$\angle \mathrm{MOS}+\angle \mathrm{SOQ}=180^{\circ} \ldots$...(ii)
Also, $\angle \mathrm{SOR}$ and $\angle \mathrm{ROQ}$ are adjacent angles.
$\therefore \angle \mathrm{SOQ}=\angle \mathrm{SOR}+\angle \mathrm{ROQ} . .$. (iii)
On putting the value of $\angle \mathrm{SOQ}$ from Eq.(iii) in Eq.(ii), we get
$\angle \mathrm{MOS}+\angle \mathrm{SOR}+\angle \mathrm{ROQ}=180^{\circ} \ldots$. (iv)
Now, on adding Eqs.(i) and (iv), we get
$\angle \mathrm{MOP}+\angle \mathrm{POQ}+\angle \mathrm{MOS}+\angle \mathrm{SOR}+\angle \mathrm{ROQ}=180^{\circ}+180^{\circ}$
$\Rightarrow \angle \mathrm{MOP}+\angle \mathrm{MOS}+\angle \mathrm{POQ}+\angle \mathrm{SOR}+\angle \mathrm{ROQ}=360^{\circ}$
But $\angle \mathrm{MOP}+\angle \mathrm{MOS}=\angle \mathrm{POS}$
Then, from Eq.(v), we get
$\angle \mathrm{POS}+\angle \mathrm{POQ}+\angle \mathrm{SOR}+\angle \mathrm{ROQ}=360^{\circ}$
Hence proved.
47.

Let two lines AB and CD intersect at point O .
To prove: $\angle A O C=\angle B O D$ (vertically opposite angles)
$\angle A O D=\angle B O C$ (vertically opposite angles)
Proof: (i) Since, ray OA stands on the line CD.
$\Rightarrow \angle A O C+\angle A O D=180^{\circ} \ldots$ (1)[Linear pair axiom]
Also, ray OD stands on the line AB.
$\angle A O D+\angle B O D=180^{\circ} \ldots$ (2) [Linear pair axiom]
From equations (1) and (2), we get
$\angle A O C+\angle A O D=\angle A O D+\angle B O D$
$\Rightarrow \angle A O C=\angle B O D$
Hence, proved.
(ii) Since, ray OD stands on the line AB .
$\therefore \angle A O D+\angle B O D=180^{\circ} \ldots$ (3) [Linear pair axiom]
Also, ray OB stands on the line CD.
$\therefore \angle D O B+\angle B O C=180^{\circ} \ldots$ (4) [linear pair axiom]
From equations (3) and (4), we get
$\angle A O D+\angle B O D=\angle B O D+\angle B O C$
$\Rightarrow \angle A O D=\angle B O C$
Hence, proved.
48. AB and CD are straight lines intersecting at O . OE the bisector of angles $\angle \mathrm{AOD}$ and OF is the bisector of $\angle \mathrm{BOC}$.

$\angle A O C=\angle B O D$ (vertically opposite angles)
Also,
OE is the bisector of $\angle A O D$ and OF is the bisector of $\angle B O C$
To prove: EOF is a straight line.
$\angle A O D=\angle B O C=2 x$ (Vertically opposite angle) ...
As OE and OF are bisectors.So $\angle A O E=\angle B O F=x$
$\angle A O D+\angle B O D=180^{\circ}$ (linear pair)
$\angle A O E+\angle E O D+\angle D O B=180^{\circ}$
From (ii)
$\angle B O F+\angle E O D+\angle D O B=180^{\circ}$
$\angle \mathrm{EOF}=180^{\circ}$
EF is a straight line.
49. We are given that $A B\|C D, C D\| E F$ and $y: z=3: 7$

We need to find the value of x in the figure given below.
We know that lines parallel to the same line are also parallel to each other.
We can conclude that $A B \| E F$

Let $y=3 a$ and $z=7 a$
We know that angles on the same side of a transversal are supplementary.
$\therefore x+y=180^{\circ}$
$x=z$ Alternate interior angles
$z+y=180^{\circ}$
or $7 a+3 a=180^{\circ}$
$\Rightarrow 10 a=180^{\circ}$
$a=18^{\circ}$.
$z=7 a=126^{\circ}$
$y=3 a=54^{\circ}$ 。
Now, as $x=z$
$\Rightarrow x=126^{\circ}$.
Therefore, we can conclude that $x=126^{\circ}$
50. $\angle \mathrm{AOF}+\angle \mathrm{FOG}=180^{\circ} \ldots$. [Linear pair axiom]
$\Rightarrow \angle \mathrm{AOG}=180^{\circ}$
$\Rightarrow \angle \mathrm{AOB}+\angle \mathrm{EOB}+\angle \mathrm{FOE}+\angle \mathrm{FOG}=180^{\circ}$
$\Rightarrow 30^{\circ}+90^{\circ}+\angle \mathrm{FOE}+30^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{FOE}+150^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{FOE}=180^{\circ}-150^{\circ}=30^{\circ}$
$\angle \mathrm{AOF}+\angle \mathrm{FOG}=180^{\circ} \ldots$ [Linear pair axiom]
$\Rightarrow \angle \mathrm{AOG}=180^{\circ}$
$\Rightarrow \angle \mathrm{AOB}+\angle \mathrm{COB}+\angle \mathrm{FOC}+\angle \mathrm{FOG}=180^{\circ}$
$\Rightarrow 30^{\circ}+\angle \mathrm{COB}+90^{\circ}+30^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{COB}+150^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{COB}=180^{\circ}-150^{\circ}=30^{\circ}$
$\angle \mathrm{FOC}=90^{\circ}$
$\Rightarrow \angle \mathrm{FOE}+\angle \mathrm{DOE}+\angle \mathrm{DOC}=90^{\circ}$
$\Rightarrow 30^{\circ}+\angle \mathrm{DOE}+30^{\circ}=90^{\circ}$
$\Rightarrow \angle \mathrm{DOE}+60^{\circ}=90^{\circ}$
$\Rightarrow \angle \mathrm{DEO}=30^{\circ}$
51. We know that if two lines intersect, then the vertically-opposite angles are equal.

Let $\angle B O C=\angle A O D=x^{\circ}$
$\angle B O C+\angle A O D=280^{\circ}$
$\mathrm{x}+\mathrm{x}=280^{\circ}$
$\Rightarrow 2 \mathrm{x}=280^{\circ}$
$\Rightarrow \mathrm{x}=140^{\circ}$
$\therefore \angle B O C=\angle A O D=140^{\circ}$
Also, let $\angle A O C=\angle B O D=y^{\circ}$
We know that the sum of all angles around a point is 360°
$\therefore \angle A O C+\angle B O C+\angle B O D+\angle A O D=360^{\circ}$
$\Rightarrow \mathrm{y}+140+\mathrm{y}+140=360^{\circ}$
$\Rightarrow 2 \mathrm{y}=80^{\circ}$
$\Rightarrow \mathrm{y}=40^{\circ}$
Hence, $\angle A O C=\angle B O D=40^{\circ}$
$\therefore \angle B O C=\angle A O D=140^{\circ}$ and $\angle A O C=\angle B O D=40^{\circ}$
52.

Draw EO \| AB \| CD
Then, $\angle E O B+\angle E O D=x^{\circ}$
Now, $\mathrm{EO} \| \mathrm{AB}$ and $B O$ is the transversal.
$\therefore \angle E O B+\angle A B O=180^{\circ}$ [Consecutive Interior Angles]
$\Rightarrow \angle E O B+55^{\circ}=180^{\circ}$
$\Rightarrow \angle E O B=125^{\circ}$
Again, $\mathrm{EO} \| \mathrm{CD}$ and DO is the transversal.
$\therefore \angle E O D+\angle C D O=180^{\circ}$ [Consecutive Interior Angles]
$\Rightarrow \angle E O D+25^{\circ}=180^{\circ}$
$\Rightarrow \angle E O D=155^{\circ}$
Therefore,
$x^{\circ}=\angle E O B+\angle E O D$
$\mathrm{x}^{\mathrm{o}}=(125+155)^{\circ}$
$\mathrm{x}^{\circ}=280^{\circ}$
53. i. In \triangle BOD,

$$
\angle \mathrm{OBD}+\angle \mathrm{BOD}+\angle \mathrm{ODB}=180^{\circ}
$$

(The sum of the three angles of a triangle is 180°)
$\Rightarrow \angle \mathrm{OBD}+\angle \mathrm{BOD}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{OBD}+\angle \mathrm{BOD}=90^{\circ}$
In \triangle OEQ,
$\angle \mathrm{EQO}+\angle \mathrm{QOE}+\angle \mathrm{OEQ}=180^{\circ}$
(The sum of the three angles of a triangle is 180°)

$\Rightarrow \angle \mathrm{EQO}+\angle \mathrm{QOE}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{EQO}+\angle \mathrm{QOE}=90^{\circ}$
From (1) and (2), we get
$\angle \mathrm{OBD}+\angle \mathrm{BOD}=\angle \mathrm{EQO}+\angle \mathrm{QOE}$
But $\angle \mathrm{BOD}=\angle \mathrm{QOE}$ (Vertically Opposite Angles)
$\therefore \angle \mathrm{OBD}=\angle \mathrm{EQO}$
ii. Join BQ

In $\triangle \mathrm{BDQ}$,
$\angle \mathrm{DBQ}+\angle \mathrm{BQD}+\angle \mathrm{QDB}=180^{\circ}$
(The sum of the three angles of a triangle is 180°)
$\Rightarrow \angle \mathrm{DBQ}+\angle \mathrm{BQD}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{DBQ}+\angle \mathrm{BQD}=90^{\circ}$

In $\triangle \mathrm{BQE}$,

$$
\angle \mathrm{EBQ}+\angle \mathrm{BQE}+\angle \mathrm{BEQ}=180^{\circ}
$$

(The sum of the three angles of a triangle is 180°)

$$
\Rightarrow \angle \mathrm{EBQ}+\angle \mathrm{BQE}+90^{\circ}=180^{\circ}
$$

$$
\Rightarrow \angle \mathrm{EBQ}+\angle \mathrm{BQE}=90^{\circ}
$$

Adding (1) and (2), we get
$(\angle \mathrm{DBQ}+\angle \mathrm{EBQ})+(\angle \mathrm{BQD}+\angle \mathrm{BQE})=90^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{DBE}+\angle \mathrm{EQD}=180^{\circ}$
$\Rightarrow \angle \mathrm{DBE}$ and $\angle \mathrm{EQD}$ are supplementary.
54.

Draw EF || AB || CD
Then, $\angle A E F+\angle C E F=x^{\circ}$
Now, $\mathrm{EF} \| \mathrm{AB}$ and AE is the transversal
$\therefore \angle A E F+\angle B A E=180^{\circ}$ [Consecutive Interior Angles]
$\Rightarrow \angle A E F+116=180$
$\Rightarrow \angle A E F=64^{\circ}$
Again, $\mathrm{EF} \| \mathrm{CD}$ and CE is the transversal.
$\angle C E F+\angle E C D=180^{\circ}$ [Consecutive Interior Angles]
$\Rightarrow \angle C E F+124=180$
$\Rightarrow \angle C E F=56^{\circ}$
Therefore,
$x^{\circ}=\angle A E F+\angle C E F$
$\mathrm{x}^{\circ}=(64+56)^{\circ}$
$\mathrm{x}^{\circ}=120^{\circ}$
55.

Draw EF || AB || CD
Now, $\mathrm{AB} \| \mathrm{EF}$ and BE is the transversal.
Then,
$\angle A B E=\angle B E F$ [Alternate Interior Angles]
$\Rightarrow \angle B E F=35^{\circ}$
Again, $\mathrm{EF} \| \mathrm{CD}$ and DE is the transversal
Then,
$\angle D E F=\angle F E D$
$\Rightarrow \angle F E D=65^{\circ}$
$\therefore x^{\circ}=\angle B E F+\angle F E D$
$\mathrm{x}^{\circ}=35^{\circ}+65^{\circ}$
$\mathrm{x}^{\circ}=100^{\circ}$
56.

$\angle \mathrm{ABC}=65^{\circ}$
$\angle \mathrm{BCD}=\angle \mathrm{BCE}+\angle \mathrm{ECD}=30^{\circ}+35^{\circ}=65^{\circ}$
$\therefore \angle \mathrm{ABC}=\angle \mathrm{BCD}$
These angles form a pair of equal alternate angles
$\therefore \mathrm{AB} \| \mathrm{CD} .$. (1)
$\angle \mathrm{FEC}+\angle \mathrm{ECD}=145^{\circ}+35^{\circ}=180^{\circ}$
These angles are consecutive interior angles formed on the same side of the transversal.
$\therefore \mathrm{CD} \| \mathrm{EF} \ldots$. . (2)
AB \| EF . . . [From (1) and (2)]
57. To Prove: $\angle R O S=\frac{1}{2}(\angle Q O S-\angle P O S)$

Given: OR is perpendicular to PQ , or $\angle \mathrm{QOR}=90^{\circ}$
From the given figure, we can conclude that $\angle \mathrm{POR}$ and $\angle \mathrm{QOR}$ form a linear pair.
We know that sum of the angles of a linear pair is 180°.
$\therefore \angle \mathrm{POR}+\angle \mathrm{QOR}=180^{\circ}$
or $\angle \mathrm{POR}=90^{\circ}$
From the figure, we can conclude that
$\angle \mathrm{POR}=\angle \mathrm{POS}+\angle \mathrm{ROS}$
$\Rightarrow \angle \mathrm{POS}+\angle \mathrm{ROS}=90^{\circ}$
$\Rightarrow \angle \mathrm{ROS}=90^{\circ}-\angle \mathrm{POS} . . .(\mathrm{i})$
Again,
$\angle \mathrm{QOS}+\angle \mathrm{POS}=180^{\circ}$
$\Rightarrow \frac{1}{2}(\angle Q O S+\angle P O S)=90^{\circ}$.(ii)
Substitute (ii) in (i), to get
$\angle R O S=\frac{1}{2}(\angle Q O S+\angle P O S)-\angle P O S$
$=\frac{1}{2}(\angle Q O S-\angle P O S)$.
Therefore, the desired result is proved.
58. Through O, draw EO \|AB\|CD

Then, $\angle E O B+\angle E O D=x^{\circ}$,
Now, $\mathrm{AB} \| \mathrm{EO}$ and BO is the transversal
$\therefore \angle A B O+\angle B O E=180^{\circ}$ [consecutive interior angles]
$\Rightarrow 40^{\circ}+\angle B O E=180^{\circ}$
$\Rightarrow \angle B O E=\left(180^{\circ}-40^{\circ}\right)=140^{\circ}$
$\Rightarrow \angle \mathrm{BOE}=140^{\circ}$
Again CD \| EO and OD is the transversal.
$\therefore \angle E O D+\angle O D C=180^{\circ}$
$\Rightarrow \angle E O D+35^{\circ}=180^{\circ}$
$\Rightarrow \angle E O D=\left(180^{\circ}-35^{\circ}\right)=145^{\circ}$
$\Rightarrow \angle \mathrm{EOD}=145^{\circ}$
\therefore reflex $\angle B O D=x^{\circ}=(\angle B O E+\angle E O D)$
$=\left(140^{\circ}+145^{\circ}\right)=285^{\circ}$
Hence, $x^{\circ}=285^{\circ}$

59. Through O draw $\mathrm{OE}\|\mathrm{AB}\| \mathrm{CD}$

Then, $\angle A O E+\angle C O E=x^{\circ}$
Now, $\mathrm{AB} \| \mathrm{OE}$ and AO is the transversal
$\therefore \angle O A B+\angle A O E=180^{\circ}$
$\Rightarrow 104^{\circ}+\angle A O E=180^{\circ}$
$\Rightarrow \angle A O E=(180-104)^{\circ}=76^{\circ}$
Again, $\mathrm{CD} \| \mathrm{OE}$ and OC is the transversal
$\therefore \angle C O E+\angle O C D=180^{\circ}$
$\Rightarrow \angle C O E+116^{\circ}=180^{\circ}$
$\Rightarrow \angle C O E=\left(180^{\circ}-116^{\circ}\right)=64^{\circ}$
$\therefore \angle A O C=\angle A O E+\angle C O E=\left(76^{\circ}+64^{\circ}\right)=140^{\circ} \quad$ [from (1) and (2)]
Hence, $x^{\circ}=140^{\circ}$

60. Since corresponding angles are equal.
$\therefore \mathrm{x}=\mathrm{y} \ldots$ (i)
We know that the interior angles on the same side of the transversal are supplementary.
$\therefore \mathrm{y}+55^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{y}=180^{\circ}-55^{\circ}=125^{\circ}$
So, $\mathrm{x}=\mathrm{y}=125^{\circ}$
Since AB || CD and CD || EF.
$\therefore \mathrm{AB} \| \mathrm{EF}$
$\Rightarrow \angle \mathrm{EAB}+\angle \mathrm{FEA}=180^{\circ}[\because$ Interior angles on the same side of the transversal EA are supplementary $]$
$\Rightarrow 90^{\circ}+\mathrm{z}+55^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{z}=35^{\circ}$
61. Draw a line RU parallel to ST through point R.

$\angle \mathrm{RST}+\angle \mathrm{SRU}=180^{\circ}$
$\therefore 130^{\circ}+\angle$ SRU $=180^{\circ}$
$\therefore \angle$ SRU $=180^{\circ}-130^{\circ}=50^{\circ}$
$\angle \mathrm{QRU}=\angle \mathrm{PQR}=110^{\circ} \ldots$ [Alternate interior angles]
$\therefore \angle \mathrm{QRS}+\angle \mathrm{SRU}=110^{\circ}$
$\therefore \angle$ QRS $+50^{\circ}=110^{\circ} \ldots$ [Using (1)]
$\therefore \angle \mathrm{QRS}=110^{\circ}-50^{\circ}=60^{\circ}$
62. Lines AB and CD intersect at O
$\therefore \angle \mathrm{AOC}=\angle \mathrm{BOD} \ldots$. [Vertically opposite angles]
But $\angle \mathrm{BOD}=40^{\circ} \ldots \ldots$ [Given] . . . (1)
$\therefore \angle \mathrm{AOC}=40^{\circ} \ldots$ (2)
Now, $\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$
$\Rightarrow 40^{\circ}+\angle \mathrm{BOE}=70^{\circ}$
$\therefore \angle \mathrm{BOE}=70^{\circ}-40^{\circ}$
$\therefore \angle \mathrm{BOE}=30^{\circ}$
Again,
Reflex $\angle \mathrm{COE}=\angle \mathrm{COD}+\angle \mathrm{BOD}+\angle \mathrm{BOE}$
$=\angle \mathrm{COD}+40^{\circ}+30^{\circ} \ldots$ [Using (1) and (2)]
$=180^{\circ}+40^{\circ}+30^{\circ} \ldots$ [As ray OA stands on the line CD]
$=250^{\circ}$
$\therefore \angle \mathrm{AOC}+\angle \mathrm{AOD}=180^{\circ} \ldots \ldots$ [Linear Pair Axiom]
$\therefore \angle \mathrm{COD}=180^{\circ}$
$\Rightarrow \mathrm{a}=2 \mathrm{k}, \mathrm{b}=3 \mathrm{k}$
Putting the values of a and b in (1), we get
$2 \mathrm{k}+3 \mathrm{k}=90^{\circ}$
$5 \mathrm{k}=90^{\circ}=k=\frac{90^{\circ}}{5}$
$\Rightarrow \mathrm{k}=18^{\mathrm{o}}$
$\mathrm{a}=2 \mathrm{k}=2\left(18^{\circ}\right)=36^{\circ}$ and $\mathrm{b}=3 \mathrm{k}=3\left(18^{\circ}\right)=54^{\circ}$.
As ray OX is perpendicular to line MN
$\therefore \angle \mathrm{XOM}+\angle \mathrm{XON}=180^{\circ} \ldots$ [Linear Pair Axiom]
$\mathrm{b}+\mathrm{c}=180^{\circ}$
$\therefore 54^{\circ}+\mathrm{c}=180^{\circ} \ldots$ [Using (2)]
$\therefore \mathrm{c}=180^{\circ}-54^{\circ} \therefore \mathrm{c}=126^{\circ}$
63. $\mathrm{d}=\mathrm{a} .$. . [Vertically opposite angles]
$=50^{\circ}$
$\mathrm{b}+\mathrm{c}+\mathrm{d}=180^{\circ} \ldots$ [A straight line angle $=180^{\circ}$]
$\therefore 90^{\circ}+\mathrm{c}+50^{\circ}=180^{\circ}$
$\therefore \mathrm{c}+140^{\circ}=180^{\circ}$
$\therefore \mathrm{c}=180^{\circ}-140^{\circ}$
$\therefore \mathrm{c}=40^{\circ}$
e = b . . . [Vertically opposite angles]
$=90^{\circ}$
$\mathrm{f}=\mathrm{c} .$. . [Vertically opposite angles]
$=40^{\circ}$
64. Through point M draw a line $A B$ parallel to the line $P Q$ as shown in Fig. Thus, we have

$\mathrm{AB} \| \mathrm{PQ}$ and $\mathrm{PQ} \| \mathrm{RS}$
$\Rightarrow \mathrm{AB} \| \mathrm{RS}$
Now, $\mathrm{AB} \| \mathrm{PQ}$ and $\angle \mathrm{QXM}$ and $\angle \mathrm{XMB}$ are interior angles on the same side of the transversal XM .
$\therefore \angle \mathrm{QXM}+\angle \mathrm{XMB}=180^{\circ}$
$\Rightarrow 135^{\circ}+\angle \mathrm{XMB}=180^{\circ}$
$\Rightarrow \angle \mathrm{XMB}=180^{\circ}-135^{\circ}=45^{\circ}$
Now, $\mathrm{AB}|\mid \mathrm{RS}$ and $\angle \mathrm{BMY}$ and $\angle \mathrm{MYR}$ are alternate angles.
$\therefore \angle \mathrm{BMY}=\angle \mathrm{MYR}$
$\Rightarrow \angle \mathrm{BMY}=40^{\circ}$
Hence, $\angle \mathrm{XMY}=\angle \mathrm{XMB}+\angle \mathrm{BMY}=45^{\circ}+40^{\circ}=85^{\circ}$
65. Given AD is transversal intersect two lines PQ and RS

To prove PQ \| RS
Proof: BE bisects ABQ
$\angle 1=\angle A B E=\angle E B Q=\frac{1}{2} \angle A B Q$
Similarity CG bisects $\angle \mathrm{BCS}$
$\therefore \angle 2=\frac{1}{2} \angle B C S$
But $\mathrm{BE} \| \mathrm{CG}$ and AD is the transversal
$\therefore \angle 1=\angle 2$
$\therefore \frac{1}{2} \angle A B Q=\frac{1}{2} \angle B C S$ [by (i) and (ii)]
$\Rightarrow \angle \mathrm{ABQ}=\angle \mathrm{BCS}[\because$ corresponding angles are equal $]$
$\therefore \mathrm{PQ} \| \mathrm{RS}$
66.

Draw $\mathrm{QN} \perp \mathrm{AB}$
Angle of incident $=$ Angle of reflection \ldots. [by law of reflection]
$\therefore \angle \mathrm{PQN}=\angle \mathrm{NQR}$
$\angle \mathrm{PQR}=124^{\circ} \ldots$ [Given]
$\therefore \angle \mathrm{PQN}+\angle \mathrm{NQR}=124^{\circ}$
$\therefore \angle \mathrm{NQR}+\angle \mathrm{NQR}=124^{\circ} \ldots[\mathrm{As} \angle \mathrm{PQN}=\angle \mathrm{NQR}]$
$\therefore 2 \angle \mathrm{NQR}=124^{\circ}$
$\therefore \angle \mathrm{NQR}=\frac{124^{0}}{2}=62^{\circ}$
$\therefore \angle \mathrm{NQB}-\angle \mathrm{RQB}=62^{\circ}$
$\therefore 90^{\circ}-\angle \mathrm{RQB}=62^{\circ}$
${ }^{\angle} \mathrm{RQB}=90^{\circ}-62^{\circ}=28^{\circ}$
67. Let AB and CD be two intersecting lines intersects at O .

Let $\angle \mathrm{BOC}=90^{\circ}$
We have to prove that each other angles i.e. $\angle \mathrm{AOC} \angle \mathrm{AOD}$ and $\angle \mathrm{BOD}$ is a right angle. $\angle \mathrm{AOD}=\angle \mathrm{BOC} \ldots$. . [Vertically opposite angles]
$=90^{\circ}$
$\angle \mathrm{AOC}+\angle \mathrm{BOC}=90^{\circ} \ldots$ [A straight line angle $\left.=180^{\circ}\right]$
$\angle A O C+90^{\circ}=180^{\circ}$
$\angle \mathrm{AOC}=180^{\circ}-90^{\circ}=90^{\circ}$
$\angle \mathrm{BOD}=\angle \mathrm{AOC} \ldots$. . [Vertically opposite angles]
$=90^{\circ}$
68. $\mathrm{a}+\mathrm{b}=180^{\circ} \ldots$ [Linear Pair Axiom] . . . (1)
$\mathrm{a}=\mathrm{b}+\frac{1}{3}$ (a right angle) \ldots [Given]
$a=b+\frac{1}{3}\left(90^{\circ}\right) \ldots$ [right angle $=90^{\circ}$]
$\therefore \mathrm{a}+\mathrm{b}=30^{\circ}$
$\therefore a-b=30^{\circ}$
$2 \mathrm{a}=180^{\circ}+30^{\circ} \ldots \ldots$ [Adding (1) and (2)]
$\therefore 2 \mathrm{a}=210^{\circ}$
$\therefore a=\frac{210^{0}}{2}=105^{0}$
$2 \mathrm{~b}=180^{\circ}-30^{\circ} \ldots \ldots$ [Subtracting (2) from (1)]
$\therefore 2 \mathrm{~b}=150^{\circ}$
$\therefore b=\frac{150^{\circ}}{2}=75^{0}$
69. We need to prove that $\angle \mathrm{PQS}=\angle \mathrm{PRT}$

We are given that $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$
From the given figure, we can conclude that $\angle \mathrm{PQS}$ and $\angle \mathrm{PQR}$, and $\angle \mathrm{PRQ}$ and $\angle \mathrm{PRT}$ form a linear pair.
We know that sum of the angles of a linear pair is 180°
$\therefore \angle P Q S+\angle P Q R=180^{\circ}$, and \ldots (i)
$\angle P R Q+\angle P R T=180^{\circ} . . .($ (ii)
From equation (i) and (ii), we can conclude that
$\angle P Q S+\angle P Q R=\angle P R Q+\angle P R T$.
But, $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$
$\therefore \angle \mathrm{PQS}=\angle \mathrm{PRT}$
Hence, proved.
70. $\angle \mathrm{AOC}+\angle \mathrm{BOC}=180^{\circ} \ldots$ [Linear pair]
$\angle \mathrm{AOC}+\angle \mathrm{BOE}+\angle \mathrm{COE}=180^{\circ} \ldots[\mathrm{As} \angle \mathrm{BOC}=\angle \mathrm{BOE}+\angle \mathrm{COE}]$
$\therefore 2 \mathrm{x}^{\mathrm{o}}+\mathrm{x}^{\mathrm{o}}+90^{\circ}=180^{\circ}$
$\therefore 3 x^{0}+90^{\circ}=180^{\circ}$
$\therefore 3 x^{0}=180^{\circ}-90^{\circ}=90^{\circ}$
$\therefore \mathrm{x}^{\mathrm{o}}=\frac{90^{0}}{3}=30^{\circ} \therefore \mathrm{x}=30$
$\angle \mathrm{BOD}=\angle \mathrm{AOC} \ldots$ [Vertically opposite angles]
$\therefore \mathrm{y}^{\mathrm{o}}=2 \mathrm{x}^{\mathrm{o}}=2\left(30^{\circ}\right)=60^{\circ}$
$\therefore \mathrm{y}=60$
$\angle \mathrm{AOD}=\angle \mathrm{COB} \ldots$ [Vertically opposite angles]
$\therefore \angle \mathrm{AOD}=\angle \mathrm{COE}+\angle \mathrm{EOB}$
$\therefore \mathrm{z}^{\mathrm{o}}=90^{\circ}+\mathrm{x}^{\mathrm{o}}=90^{\circ}+30^{\circ}=120^{\circ}$
$\therefore \mathrm{z}=120$
71.

OF bisects $\angle \mathrm{BOD} .$. [Given]
$\angle \mathrm{BOF}=\angle \mathrm{DOF}=35^{\circ}$
$\angle \mathrm{COE}=\angle \mathrm{DOF}=35^{\circ}$
$\angle \mathrm{EOF}=180^{\circ} \ldots$ [A straight angle $=180^{\circ}$]
$\therefore \angle \mathrm{EOC}+\angle \mathrm{BOC}+\angle \mathrm{BOF}=180^{\circ}$
$\therefore 35^{\circ}+\angle \mathrm{BOC}+35^{\circ}=180^{\circ}$
$\therefore \angle \mathrm{BOC}=180^{\circ}-70^{\circ}=110^{\circ}$
$\angle \mathrm{AOD}=\angle \mathrm{BOC} \ldots$ [Vertically opposite angles]
$=110^{\circ}$
72. We know that if two lines intersect, then the vertically-opposite angles are equal.

$\angle A O C=90^{\circ}$, Then $\angle A O C=\angle B O D=90^{\circ}$
And let $\angle B O C=\angle A O D=\mathrm{x}^{\circ}$
Also, we know that the sum of all angles around a point is 360°
$\Rightarrow 90^{\circ}+90^{\circ}+x^{\circ}+x^{\circ}=360^{\circ}$
$\Rightarrow 2 x^{\circ}=180^{\circ}$
$\Rightarrow x^{\circ}=90^{\circ}$
Hence, $\angle B O C=\angle A O D=\mathrm{x}^{\circ}=90^{\circ}$
$\therefore \angle A O C=\angle B O D=\angle B O C=\angle A O D=90^{\circ}$
Hence, the measure of each of the remaining angles is 90°.
73.

Draw $A B$ to meet $C D$ in F.
As AF || DE and transversal DF intersects them
$\therefore \angle \mathrm{DFB}=\angle \mathrm{EDF}=100^{\circ} \ldots$ [Alternate Angles]
$\angle \mathrm{DFB}+\angle \mathrm{BFC}=180^{\circ} \ldots$ [Linear pair axiom]
$\therefore 100^{\circ}+\angle \mathrm{BFC}=180^{\circ}$
$\therefore \angle \mathrm{BFC}=180^{\circ}-100^{\circ}=80^{\circ}$
$\angle \mathrm{ABC}+\angle \mathrm{FBC}=180^{\circ} \ldots$ [Linear pair axiom]
$\therefore 110^{\circ}+\angle \mathrm{FBC}=180^{\circ}$
$\therefore \angle \mathrm{FBC}=180^{\circ}-110^{\circ}=70^{\circ}$
In $\triangle \mathrm{BFC}$,
$\angle \mathrm{BCF}+\angle \mathrm{BFC}+\angle \mathrm{FBC}=180^{\circ} \ldots$ [Sum of all the angles of a triangle]
$\therefore \mathrm{x}^{\mathrm{o}}+80^{\circ}+70^{\circ}=180^{\circ}$
$\therefore \mathrm{x}^{\mathrm{o}}+150^{\circ}=180^{\circ}$
$\therefore \mathrm{x}^{\mathrm{o}}=180^{\circ}-150^{\circ}=30^{\circ}$
$\therefore x=30^{0}$
74. Given: In figure, $\mathrm{OD} \perp \mathrm{OE}$ (i.e. $\angle D O E=90^{\circ}$), OD and OE are the bisectors of $\angle \mathrm{AOC}$ and $\angle \mathrm{BOC}$. To prove: points A, O and B are collinear i.e., AOB is a straight line.

Proof: From the fig. we have $\angle \mathrm{AOB}$ comprising $\angle \mathrm{AOC}$ and $\angle \mathrm{BOC}$ such that OD and OE are the bisectors of these two angles $\angle A O B=\angle A O C+\angle B O C$
Since, OD and OE bisect angles $\angle \mathrm{AOC}$ and $\angle \mathrm{BOC}$ respectively.
$\therefore \angle A O C=2 \angle D O C$
And $\angle C O B=2 \angle C O E$
On adding equations (1) and (2), we get
$\angle A O C+\angle C O B=2 \angle D O C+2 \angle C O E$
$\Rightarrow \angle A O C+\angle C O B=2(\angle D O C+\angle C O E)$
$\Rightarrow \angle A O C+\angle C O B=2 \angle D O E$
$\Rightarrow \angle A O C+\angle C O B=2 \times 90^{\circ}[\because O D \perp O E]$
$\Rightarrow \angle A O C+\angle C O B=180^{\circ}$
$\therefore \angle A O B=180^{\circ}$
So, $\angle A O C$ and $\angle C O B$ are forming linear pair or AOB is a straight line. Hence, points A, O and B are collinear.
75. Since, $O P \| R S$ and transversal RN intersects them at N and R respectively
$\therefore \quad \angle R N P=\angle S R N$ (Alternate interior angles)
$\Rightarrow \quad \angle R N P=130^{\circ}$
$\therefore \quad \angle P N Q=180^{\circ}-130^{\circ}=50^{\circ}$ (Linear pair)
$\angle O P Q=\angle P N Q+\angle P Q N$ (Exterior angle property)
$\Rightarrow \quad 110^{\circ}=50^{\circ}+\angle P Q N$
$\Rightarrow \quad \angle P Q N=110^{\circ}-50^{\circ}=60^{\circ}$
Also, $\angle P Q N=\angle P Q R$ (see figure)
$\therefore \angle P Q R=60^{\circ}$

