Solution

QUESTION BANK

Class 09 - Mathematics

1. **(b)** 155°

Explanation:

Let angles of a triangle be $\angle A$, $\angle B$ and $\angle C$.

In $\triangle ABC$,

 $\angle A + \angle B + \angle C = 180^{\circ}$ [sum of all interior angles of a triangle is 180^o]

$$\Rightarrow \frac{1}{2} \angle A + \frac{1}{2} \angle B + \frac{1}{2} \angle C = \frac{180^{\circ}}{2} = 90^{\circ} \text{ [dividing both sides by 2]}$$

$$\Rightarrow \frac{1}{2} \angle B + \frac{1}{2} \angle C = 90^{\circ} - \frac{1}{2} \angle A$$
 [: In $\triangle OBC$, $\angle OBC + \angle BCO + \angle COB = 180^{\circ}$]

$$\Rightarrow \text{ Since, } \frac{\angle B}{2} + \frac{\angle C}{2} + \angle BOC = 180^{\circ} \text{ as BO and OC are the angle bisectors of } \angle ABC \text{ and } \angle BCA \text{, respectively} \\\Rightarrow 180^{\circ} - \angle BOC = 90^{\circ} - \frac{1}{2} \angle A$$

$$\Rightarrow 180^{\circ} - \angle BOC = 90^{\circ} - \frac{1}{2} \angle$$

$$\therefore \angle BOC = 180^{\circ} - 90^{\circ} + \frac{1}{2} \angle A$$

$$=90^{\circ} + \frac{1}{2} \times 130^{\circ} = 90^{\circ} + 65^{\circ} [\therefore \angle A = 130^{\circ} \text{ (given)}]$$

Hence, the required angle is 155^o.

2. (a) 75°

5

Explanation: Let the measure of the required angle be x° Then, the measure of its complement will be $(90 - x)^{\circ}$

 $\therefore x = 5 (90 - x)$ $\Rightarrow x = 450 - 5x$ $\Rightarrow 6x = 450$ $\Rightarrow x = 75^{\circ}$

```
3. (a) 54°
```

Explanation: Let the measure of the required angle be x° Then, the measure of its complement will be(90 – x)°

 $\therefore 2x = 3 (90 - x)$ $\Rightarrow 2x = 270 - 3x$ $\Rightarrow 5x = 270$ $\Rightarrow x = 54^{\circ}$

4. **(c)** (ii) and (iii) are correct

Explanation: When two straight lines intersect them, Adjacent angles are supplementary and opposite angles are equal.

```
5. (a) 90°
```

Explanation: Given that, AB and CD intersect at O $\angle AOC + \angle COB + \angle BOD = 270^{\circ}$ (i) $\angle COB + \angle BOD = 180^{\circ}$ (Linear pair) (ii) Using (ii) in (i), we get $\angle AOC + 180^{\circ} = 270^{\circ}$ $\angle AOC = 90^{\circ}$

6. **(d)** An acute angled triangle

Explanation: Let the angles of the triange be 5x, 3x and 7x We know that the sum of the angles of a triangle is 180°

 $5x + 3x + 7x = 180^{\circ}$ $15x = 180^{\circ}$ $x = 12^{\circ}$ Therefore the angles are $5x = 5 \times 12^{\circ} = 60^{\circ}$ $3x = 3 \times 12^{\circ} = 36^{\circ}$ $7x = 7 \times 12^{\circ} = 84^{\circ}$

Since all the angles are less than 90[°] there fore it is a acute angled triangle.

7. **(d)** 12 : 3 : 2

Explanation: Let A be x $B = \frac{1}{4}x$ $C = \frac{1}{6}x$ A : B : C x : $\frac{1}{4}x : \frac{1}{6}x$ LCM of 4 and 6 is 12 12 : 3 : 2

8. **(a)** 117°

Explanation: \angle BOD + \angle BOC = 180^o (Linear pair)

 $63^{\rm o} + \angle \text{BOC} = 180^{\rm o}$

∠BOC = 117⁰

9. (d) Straight line

As can be seen from the above diagram, the two planes "P" and "Q" are intersecting in a line, which is AB.

10. **(d)** 30⁰

Explanation: Let one angle be x^0

Its supplementary angle will be $180^{\rm 0}$ - $x^{\rm 0}$ According to question

 $x = \frac{1}{5}(180^{\circ} - x)$ $5x + x = 180^{\circ}$ $6x = 180^{\circ}$ $x = \frac{180}{6}$ $x = 30^{\circ}$

11. Supplement of an angle = 180 - x Complement of an angle = 90 - x

According to question, 180 - x = 3(90 - x) 180 - x = 270 - 3x -x + 3x = 270 - 1802x = 90 $x = \frac{90}{2}$ x = 45

12. Let the measure of an angle be x^0 , then the measure of its complement is also x^0 . We know that the sum of the measures of complementary angles is 90° .

Therefore, $x^0 + x^0 = 90^\circ$ $\Rightarrow 2x^0 = 90^\circ$ $\Rightarrow x^0 = 45^\circ$

13. Sum of any two angles equals to 90 degrees then they are called complementary angles

Let one angle = x It's complementary angle = x + 14 x + x + 14 = 90 2x = 90 - 14 2x = 76 $x = \frac{76}{2}$ x = 38One angle = x = 38Second angle = x + 14 = 38 + 14 = 52.

14. Given angle is 138^o

Since the sum of an angle and its supplement is 180°

Therefore, its supplement will be:

 $180^{\circ} - 138^{\circ} = 42^{\circ}$

15. Let the angle be x.

Its supplement = 180° - x according to question,

 $180^{\circ} - x = \frac{2}{3}x$ $\Rightarrow 3(180^{\circ} - x) = 2x$ $\Rightarrow 540^{\circ} - 3x = 2x$ $\Rightarrow 540^{\circ} = 5x$ $\Rightarrow x = \frac{540}{5}$ $\Rightarrow x = 108^{\circ}.$

Now, the angle's supplement = 180° - x = 180° - 108° = 72°

Hence, the angle is 108 and its supplement is 72° .

16. Given angle is 20^o

Since the sum of an angle and its compliment is 90^o Therefore, its compliment will be:

 $90^{\circ} - 20^{\circ} = 70^{\circ}$

- 17. Two angles whose sum is 180° are called supplementary angles. Supplement of $42^\circ = 180^\circ - 42^\circ = 138^\circ$ Supplement of $42^\circ = 138^\circ$
- 18. Let the measure of an angle be x, then measure of its supplement is also x. Since the sum of supplementary angles is 180° .

$$\therefore x + x = 180^{\circ} \Rightarrow 2x = 180^{\circ} \Rightarrow x = 90^{\circ}$$

19. The measure of the supplementary angle $x = (180^{\circ} - r^{\circ})$

Where r^o = given measurement

 $\therefore x = (180^{\circ} - 68^{\circ}) = 112^{\circ}$

20. Given angle is 54^o

Since the sum of an angle and its supplement is 180° Therefore, its compliment will be:

 $180^{\circ} - 54^{\circ} = 126^{\circ}$

21. The measure of the supplementary angle $x = (180^{\circ} - r^{\circ})$

Where r⁰ = given measurement

$$\therefore x = (180^{\circ} - 125) = 55^{\circ}$$

22. The measure of the complementary angle $x = (90^{\circ} - r^{\circ})$

Where $r^0 =$ given measurement

 $\therefore x = (90^{\circ} - 72^{\circ}) = 18^{\circ}$

hence, measure of the complementary angle of 72° .= 18°

23. Let the measure of the required angle be x°.

Then, the measure of its complement is $(90 - x)^{\circ}$.

It is given that

 $(90 - x)^{\circ} - x^{\circ} = 20^{\circ}$ $\Rightarrow 90^{\circ} - 2x^{\circ} = 20^{\circ}$ $\Rightarrow -2x^{\circ} = 20^{\circ} - 90^{\circ}$ $\Rightarrow -2x^{\circ} = -70^{\circ}$ $\Rightarrow x^{\circ} = 35^{\circ}$

Hence, the measure of the angle is 35°

24. Given angle is 30^o

Since the sum of an angle and its compliment is 90^o Therefore, its compliment will be,

```
90^{\circ} - 30^{\circ} = 60^{\circ}
```

25. Let x be the angle

then according to the question,

90 - x = 180 - 3x $\rightarrow x - \frac{90}{2}$

$$\Rightarrow x = \frac{36}{2}$$

 $\therefore x = 45$

26. Since OA and OB are opposite rays.

Therefore, AB is a line. Since ray OC

stands on line AB.

```
\therefore \angle AOC + \angle COB = 180^{\circ} [Linear Pairs]
\Rightarrow \angle AOC + \angle COD + \angle BOD = 180^{\circ} [\because \angle COB = \angle COD + \angle BOD]
```

```
\Rightarrow (\angle AOC + \angle BOD) + \angle COD = 180^{\circ}
```

```
\Rightarrow 90° +\angle COD=180° [\therefore \angleAOC+\angleBOD=90° Given)]
```

- $\Rightarrow \angle \text{COD}=180^\circ 90^\circ = 90^\circ.$
- 27. x = y (Given)

Therefore, l || m (Corresponding angles) (i)

```
Also, a = b (Given)
```

Therefore, n || m (Corresponding angles) (ii)

From (i) and (ii), $l \parallel n$ (Lines parallel to the same line).

28. $\angle BOC = \angle AOB + \angle AOC$

= 90° + 90° = 180° . . . [Given : $\angle AOB$ and $\angle AOC$ = 90°]

...BOD is a line . . . [Linear pair axiom]

```
29. When a ray falls on a mirror, it is reflected and angle of incidence = angle of reflection = x^{\circ} (say).
```

QM is drawn normal to AB and therefore, we have,

angle of incidence = \angle PQM, angle of reflection = \angle MQR

and $\angle AQM = 90^{\circ}$

Now, we have, $\angle PQM + \angle MQR = \angle PQR = 112^{\circ}$ (given) $\therefore 2 \angle PQM = 112^{\circ}$ $\therefore \angle PQM = 56^{\circ}$ Therefore, $\angle PQA = \angle AQM - \angle PQM = 90^{\circ} - 56^{\circ} = 34^{\circ}$ 30. AOB will be a straight line, if $\angle AOC + \angle BOC = 180^{\circ}$ $(3x + 5)^{\circ} + (2x - 25)^{\circ} = 180^{\circ}$ $\Rightarrow 5x^{\circ} = 200^{\circ} \Rightarrow x = 40^{\circ}$ Therefore, $x = 40^{\circ}$ will make AOB a straight line 31. Given: AB and CD are two lines intersect each other at O. To prove: i. $\angle 1 = \angle 2$ ii. $\angle 3 = \angle 4$ Proof: $\angle 1 + \angle 4 = 180^{\circ}$...(i) [By linear pair] $\angle 4 + \angle 2 = 180^{\circ}$...(ii) [By linear pair] $\angle 1 + \angle 4 = \angle 4 + \angle 2$ [By eq (i) and (ii)] $\angle 1 = \angle 2$ Similarly, $\angle 3 = \angle 4$ 32. $\angle POC = \angle DOQ = 2y \dots$ [Vertically opposite angles] $\angle AOB = 180^{\circ} \dots$ [A straight angle = 180°] $\angle AOB + \angle POC + \angle BOC = 180^{\circ}$ $\angle 5y + 2y + 5y = 180^{\circ}$ $\angle 12y = 180^{\circ}$ $\angle y = rac{180^0}{12} = 15^0$ 33. Let the two complementary angles be 2x and 3x. We know that, sum of complementary angles is 90°. $\therefore 2x + 3x = 90^{\circ}$ $\Rightarrow 5x = 90^{\circ}$ \Rightarrow $x=18^{\circ}$ \therefore The angles are $2 \times 18^{\circ} = 36^{\circ}$ and $3 \times 18^{\circ} = 54^{\circ}$. 34. AOB is a straight line. Therefore, by linear pair axiom, $\angle AOC + \angle COD + \angle BOD = 180^{\circ}$ $\Rightarrow (3x + 7)^{\circ} + (2x - 19)^{\circ} + x^{\circ} = 180^{\circ}$ $\Rightarrow 6x = 192^{\circ}$ $\Rightarrow x = 32^{\circ}$ Therefore, $igtriangle AOC = 3 imes 32^\circ + 7 = 103^\circ$ $\angle COD = 2 imes 32^\circ - 19 = 45^\circ$ and $\angle BOD = 32^{\circ}$ 35. $a + b = 180^{\circ} \dots [Linear pair axiom] \dots (1)$ $a - b = 80^{\circ} \dots$ [Given] (2) $2a = 180^{\circ} + 80^{\circ} \dots$ [Adding (1) and (2)] $\therefore 2a = 260^{\circ}$ $\therefore a = rac{260^0}{2} = 130^0$ Subtracting (2) and (1), we get $\therefore 2b = 180^{\circ} - 80^{\circ}$ $\therefore 2b = 100^{\circ}$ $\therefore b = \frac{100^0}{2} = 50^0$

36. Let the two angles be 4x and 5x, respectively

Then, $4x^{\circ} + 5x^{\circ} = 90^{\circ}$ $\Rightarrow 9x^{\circ} = 90^{\circ}$ $\Rightarrow x^{\circ} = 10^{\circ}$ Then the two anlges are $4x = 4 \times 10^\circ = 40^\circ$ and $5x = 5 \times 10^\circ = 50^\circ$ Therefore, one angle is 40° and its complemetry angle is 50° 37. Here, $\angle AOC$ and $\angle BOC$ form a linear pair. $\therefore \angle AOC + \angle BOC = 180^{\circ}$ $\Rightarrow x^{\circ} + 125^{\circ} = 180^{\circ}$ $\Rightarrow x^{\circ} = 180^{\circ} - 125^{\circ} = 55^{\circ}$ Now, $\angle AOD = \angle BOC = 125^{\circ}$ (Vertically opposite angles) $: v^{\circ} = 125^{\circ}$ $\angle BOD = \angle AOC = 55^{\circ}$ (Vertically opposite angles) $\therefore z^{\circ} = 55^{\circ}$ 38. Let the measure of the required angle be x° Then, the measure of its complement = $(90^\circ - x^\circ)$ And then measure of its supplement = $(180 - x)^{\circ}$ given that, $(90^{\circ} - x^{\circ}) = \frac{1}{3} (180^{\circ} - x^{\circ})$ \Rightarrow 3(90° - x°) = (180° - x°) $\Rightarrow 270^{\circ} - 3x^{\circ} = 180^{\circ} - x^{\circ}$ $\Rightarrow 2x^{\circ} = 90^{\circ}$ $\Rightarrow x^{\circ} = 45^{\circ}$ Hence, the measure of the required angle is 45° 39. Given that, $(2x - 10)^{0}$ and $(x - 5)^{0}$ are compliment angles. Since, angles are complimentary Therefore, $(2x - 10)^{0} + (x - 5)^{0} = 90^{0}$ $3x - 15^{\circ} = 90^{\circ}$ $x = 35^{\circ}$ 40. Let the measure of the required angle be x°, Then, its complement = $(90 - x)^{\circ}$

and its supplement = $(180 - x)^{\circ}$.

```
\therefore 7(90° - x°) = 3(180° - x°) - 10°
```

- $\Rightarrow 630^{\circ} 7x^{\circ} = 540^{\circ} 3x^{\circ} 10^{\circ}$
- $\Rightarrow 4x^{\circ} = 100^{\circ}$

```
\Rightarrow x^{\circ} = 25^{\circ}
```

Hence, the measure of the required angle is 25°.

```
41. AB is a line
```

```
\therefore \angle AOB = 180^{\circ} (Linear Pair)
```

```
\therefore \angle AOC + \angle COD + \angle BOD = 180^{\circ} (Linear Pair)
```

```
\therefore (\angle AOC + \angle BOD) + \angle COD = 180^{\circ}
```

```
\therefore 70° + \angleCOD = 180° \ldots [Given : \angleAOC + \angleBOD = 70°]
```

```
\therefore \angle \text{COD} = 180^{\circ} - 70^{\circ} = 110^{\circ}
```

$$4 \text{OB} + 2 \text{BOC} + 2 \text{COP} = 180^{\circ} \dots [\text{A straight angle} = 180^{\circ}] \dots (1)$$

$$2 \text{POD} + 2 \text{DOE} + 2 \text{EOA} = 180^{\circ} \dots [\text{A straight angle} = 180^{\circ}] \dots (2)$$

$$2 \text{AOB} + 2 \text{BOC} + (2 \text{COP} + 2 \text{POD}) + 2 \text{DOE} + 2 \text{EOA} = 180^{\circ} + 180^{\circ} = 360^{\circ}$$

$$2 \text{AOB} + 2 \text{BOC} + (2 \text{COP} + 2 \text{POD}) + 2 \text{DOE} + 2 \text{EOA} = 180^{\circ} + 180^{\circ} = 360^{\circ}$$

$$43. \text{ We know that total angle on a line is equal to 180^{\circ}.$$

$$\therefore 2x + 3x + 4x = 180^{\circ} \text{ (angles on same line)}$$

$$\Rightarrow 9x = 180^{\circ}$$

$$\therefore x = 20^{\circ}.$$

$$44. \text{ AOB will be a straight line if 3x + 20 + 4x - 36 = 180^{\circ}$$

$$\Rightarrow 7x = 196^{\circ}$$

$$\Rightarrow x = 25^{\circ}$$
Therefore, x = 28 will make AOB a straight line
$$45. \text{ Since AOB is a straight line, the sum of all the angles on the same side of AOB at a point O on it, is 180^{\circ}.$$
Therefore, we have,

 $x^{\circ} + 65^{\circ} + (2x - 20)^{\circ} = 180^{\circ}$ $\Rightarrow 3x^{\circ} = 135^{\circ}$ $\Rightarrow x^{\circ} = 45^{\circ}$

- $\therefore \angle AOC = x^\circ = 45^\circ \text{ and } \angle BOD = (2 \times 45 20)^\circ = 70^\circ$
- 46. Let us produce a ray OQ backwards to a point M, then MOQ is a straight line. Now, OP is a ray on the line MOQ. Then, by linear pair axiom, we have

 \angle MOP + \angle POQ = 180^o(i)

Similarly, OS is a ray on the line MOQ. Then, by linear pair axiom, we have

 $\angle MOS + \angle SOQ = 180^{\circ} \dots$ (ii)

Also, \angle SOR and \angle ROQ are adjacent angles.

 $\therefore \angle SOQ = \angle SOR + \angle ROQ \dots$ (iii)

On putting the value of \angle SOQ from Eq.(iii) in Eq.(ii), we get

 $\angle MOS + \angle SOR + \angle ROQ = 180^{\circ} \dots (iv)$

Now, on adding Eqs.(i) and (iv), we get

 \angle MOP + \angle POQ + \angle MOS + \angle SOR + \angle ROQ = 180^o + 180^o

$$\Rightarrow \angle MOP + \angle MOS + \angle POQ + \angle SOR + \angle ROQ = 360^{\circ} \dots (iv)$$

But \angle MOP + \angle MOS = \angle POS

Then, from Eq.(v), we get

 $\angle POS + \angle POQ + \angle SOR + \angle ROQ = 360^{\circ}$

Hence proved.

47.

Let two lines AB and CD intersect at point O. To prove: $\angle AOC = \angle BOD$ (vertically opposite angles) $\angle AOD = \angle BOC$ (vertically opposite angles) Proof: (i) Since, ray OA stands on the line CD. $\Rightarrow \angle AOC + \angle AOD = 180^{\circ}...(1)$ [Linear pair axiom] Also, ray OD stands on the line AB. $\angle AOD + \angle BOD = 180^{\circ} \dots (2)$ [Linear pair axiom] From equations (1) and (2), we get $\angle AOC + \angle AOD = \angle AOD + \angle BOD$ $\Rightarrow \angle AOC = \angle BOD$ Hence, proved. (ii) Since, ray OD stands on the line AB. $\therefore \angle AOD + \angle BOD = 180^{\circ} \dots$ (3) [Linear pair axiom] Also, ray OB stands on the line CD. $\therefore \angle DOB + \angle BOC = 180^{\circ} \dots$ (4) [linear pair axiom] From equations (3) and (4), we get $\angle AOD + \angle BOD = \angle BOD + \angle BOC$ $\Rightarrow \angle AOD = \angle BOC$

Hence, proved. 48. AB and CD are straight lines intersecting at O. OE the bisector of angles \angle AOD and OF is the bisector of \angle BOC.

 $\angle AOC = \angle BOD$ (vertically opposite angles) Also,

OE is the bisector of $\angle AOD$ and OF is the bisector of $\angle BOC$

To prove: EOF is a straight line.

 $\angle AOD = \angle BOC = 2x$ (Vertically opposite angle) ...(i)

As OE and OF are bisectors.So $\angle AOE = \angle BOF = x \dots$ (*ii*)

 $\angle AOD + \angle BOD = 180^{\circ}$ (linear pair)

 $\angle AOE + \angle EOD + \angle DOB = 180^{\circ}$

 $\angle BOF + \angle EOD + \angle DOB = 180^{\circ}$

∠EOF = *180^o*

EF is a straight line.

49. We are given that $AB \parallel CD, CD \parallel EF$ and y: z = 3:7

We need to find the value of x in the figure given below.

We know that lines parallel to the same line are also parallel to each other.

We can conclude that $AB \parallel EF$

Let y = 3a and z = 7aWe know that angles on the same side of a transversal are supplementary. $\therefore x + y = 180^{\circ}$ x = z Alternate interior angles $z+y=180^{\circ}$ or $7a+3a=180^\circ$ $\Rightarrow 10a = 180^{\circ}$ $a = 18^{\circ}$. $z=7a=126^\circ$ $y = 3a = 54^{\circ}$. Now, as x = z $\Rightarrow x = 126^{\circ}.$ Therefore, we can conclude that $x = 126^{\circ}$ 50. $\angle AOF + \angle FOG = 180^{\circ} \dots$ [Linear pair axiom] $\Rightarrow \angle AOG = 180^{\circ}$ $\Rightarrow \angle AOB + \angle EOB + \angle FOE + \angle FOG = 180^{\circ}$ $\Rightarrow 30^{\circ} + 90^{\circ} + \angle FOE + 30^{\circ} = 180^{\circ}$ $\Rightarrow \angle FOE + 150^{\circ} = 180^{\circ}$ $\Rightarrow \angle FOE = 180^{\circ} - 150^{\circ} = 30^{\circ}$ $\angle AOF + \angle FOG = 180^{\circ} \dots [Linear pair axiom]$ $\Rightarrow \angle AOG = 180^{\circ}$ $\Rightarrow \angle AOB + \angle COB + \angle FOC + \angle FOG = 180^{\circ}$ $\Rightarrow 30^{\circ} + \angle COB + 90^{\circ} + 30^{\circ} = 180^{\circ}$ $\Rightarrow \angle COB + 150^{\circ} = 180^{\circ}$ $\Rightarrow \angle \text{COB} = 180^{\circ} - 150^{\circ} = 30^{\circ}$ $\angle FOC = 90^{\circ}$ $\Rightarrow \angle FOE + \angle DOE + \angle DOC = 90^{\circ}$ $\Rightarrow 30^{\circ} + \angle DOE + 30^{\circ} = 90^{\circ}$ $\Rightarrow \angle DOE + 60^{\circ} = 90^{\circ}$ $\Rightarrow \angle DEO = 30^{\circ}$ 51. We know that if two lines intersect, then the vertically-opposite angles are equal. Let $\angle BOC = \angle AOD = x^{\circ}$ $\angle BOC + \angle AOD = 280^{\circ}$ $x + x = 280^{\circ}$ \Rightarrow 2x = 280° \Rightarrow x = 140° $\therefore \angle BOC = \angle AOD = 140^{\circ}$ Also, let $\angle AOC = \angle BOD = y^{\circ}$ We know that the sum of all angles around a point is 360° $\therefore \angle AOC + \angle BOC + \angle BOD + \angle AOD = 360^{\circ}$ \Rightarrow y + 140 + y + 140 = 360° $\Rightarrow 2y = 80^{\circ}$ \Rightarrow v = 40° Hence, $\angle AOC = \angle BOD = 40^{\circ}$

 $\therefore \angle BOC = \angle AOD = 140^{\circ} \ \text{ and } \angle AOC = \angle BOD = 40^{\circ}$

Draw EO || AB || CD Then, $\angle EOB + \angle EOD = x^{\circ}$ Now, EO || AB and *BO* is the transversal. $\therefore \angle EOB + \angle ABO = 180^{\circ}$ [Consecutive Interior Angles] $\Rightarrow \angle EOB + 55^{\circ} = 180^{\circ}$ $\Rightarrow \angle EOB = 125^{\circ}$ Again, EO || CD and DO is the transversal. $\therefore \angle EOD + \angle CDO = 180^{\circ}$ [Consecutive Interior Angles] $\Rightarrow \angle EOD + 25^{\circ} = 180^{\circ}$ $\Rightarrow \angle EOD = 155^{\circ}$ Therefore, $x^{\circ} = \angle EOB + \angle EOD$ $x^{\circ} = (125 + 155)^{\circ}$ $x^{\circ} = 280^{\circ}$

53. i. In
$$\triangle$$
BOD,

 $\angle OBD + \angle BOD + \angle ODB = 180^{\circ}$

(The sum of the three angles of a triangle is 180°)

 $\Rightarrow \angle OBD + \angle BOD + 90^{\circ} = 180^{\circ}$ $\Rightarrow \angle OBD + \angle BOD = 90^{\circ} \dots \dots \dots (1)$ In $\triangle OEQ$, $\angle EQO + \angle QOE + \angle OEQ = 180^{\circ} \dots \dots (2)$

$$h \triangle BQE,$$

$$\angle EBQ + \angle BQE + \angle BQE + 90^{\circ} = 180^{\circ}$$

(The sum of the three angles of a triangle is 180°)

$$\Rightarrow \angle EBQ + \angle BQE + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle EBQ + \angle BQE = 90^{\circ}$$

Adding (1) and (2), we get

$$(\angle DBQ + \angle EBQ) + (\angle BQD + \angle BQE) = 90^{\circ} + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle DBE + \angle EQD = 180^{\circ}$$

$$\Rightarrow \angle DBE and \angle EQD are supplementary.$$

54.

$$\underbrace{e_{124^{\circ}}}_{C} \underbrace{b_{124^{\circ}}}_{D} \underbrace{b_{124^{\circ$$

Ā 56. 35 $\angle ABC = 65^{\circ}$ $\angle BCD = \angle BCE + \angle ECD = 30^{\circ} + 35^{\circ} = 65^{\circ}$ $\therefore \angle ABC = \angle BCD$ These angles form a pair of equal alternate angles $\therefore AB \parallel CD \dots (1)$ \angle FEC + \angle ECD = 145^o + 35^o = 180^o These angles are consecutive interior angles formed on the same side of the transversal. \therefore CD || EF (2) AB || EF . . . [From (1) and (2)] 57. To Prove: $\angle ROS = \frac{1}{2}(\angle QOS - \angle POS)$ Given: OR is perpendicular to PQ, or $\angle QOR = 90^{\circ}$ From the given figure, we can conclude that \angle POR and \angle QOR form a linear pair. We know that sum of the angles of a linear pair is 180°. $\therefore \angle POR + \angle QOR = 180^{\circ}$ or $\angle POR = 90^{\circ}$ From the figure, we can conclude that $\angle POR = \angle POS + \angle ROS$ $\Rightarrow \angle POS + \angle ROS = 90^{\circ}$ $\Rightarrow \angle ROS = 90^{\circ} - \angle POS...(i)$ Again, $\angle QOS + \angle POS = 180^{\circ}$ $\Rightarrow \frac{1}{2}(\angle QOS + \angle POS) = 90^{\circ}$.(ii) Substitute (ii) in (i), to get $\angle ROS = \frac{1}{2}(\angle QOS + \angle POS) - \angle POS$ $=\frac{1}{2}(\angle QOS - \angle POS).$ Therefore, the desired result is proved. 58. Through O, draw EO || AB || CD Then, $\angle EOB + \angle EOD = x^\circ$, Now, AB || EO and BO is the transversal $\therefore \angle ABO + \angle BOE = 180^{\circ}$ [consecutive interior angles] $\Rightarrow 40^{\circ} + \angle BOE = 180^{\circ}$ $\Rightarrow \angle BOE = (180^{\circ} - 40^{\circ}) = 140^{\circ}$ $\Rightarrow \angle BOE = 140^{\circ}$ Again CD || EO and OD is the transversal. $\therefore \angle EOD + \angle ODC = 180^{\circ}$ $\Rightarrow \angle EOD + 35^{\circ} = 180^{\circ}$ $\Rightarrow \angle EOD = (180^{\circ} - 35^{\circ}) = 145^{\circ}$ $\Rightarrow \angle EOD = 145^{\circ}$ \therefore reflex $\angle BOD = x^{\circ} = (\angle BOE + \angle EOD)$ $=(140^{\circ}+145^{\circ})=285^{\circ}$ Hence, $x^{\circ} = 285^{\circ}$

59. Through O draw OE || AB || CD Then, $\angle AOE + \angle COE = x^{\circ}$ Now, AB || OE and AO is the transversal $\therefore \angle OAB + \angle AOE = 180^{\circ}$ $\Rightarrow 104^{\circ} + \angle AOE = 180^{\circ}$ $\Rightarrow \angle AOE = (180 - 104)^{\circ} = 76^{\circ}$(1) Again, CD || OE and OC is the transversal $\therefore \angle COE + \angle OCD = 180^{\circ}$ $\Rightarrow \angle COE + 116^{\circ} = 180^{\circ}$ $\Rightarrow \angle COE = (180^\circ - 116^\circ) = 64^\circ$ (2) $\therefore \angle AOC = \angle AOE + \angle COE = (76^{\circ} + 64^{\circ}) = 140^{\circ} \quad \text{[from (1) and (2)]}$ Hence, $x^{\circ} = 140^{\circ}$ В 1040 1169

60. Since corresponding angles are equal.

∴ x = y ... (i)

We know that the interior angles on the same side of the transversal are supplementary.

 $\therefore y + 55^{\circ} = 180^{\circ}$ $\Rightarrow y = 180^{\circ} - 55^{\circ} = 125^{\circ}$ So, x = y = 125°
Since AB || CD and CD || EF. $\therefore AB || EF$ $\Rightarrow \angle EAB + \angle FEA = 180^{\circ} [\because \text{ Interior angles on the same side of the transversal EA are supplementary}]$

 $\Rightarrow 90^{\circ} + z + 55^{\circ} = 180^{\circ}$

 \Rightarrow z = 35^o

61. Draw a line RU parallel to ST through point R.

 $\angle RST + \angle SRU = 180^{\circ}$

∴ $130^{\circ} + \angle SRU = 180^{\circ}$ ∴ $\angle SRU = 180^{\circ} - 130^{\circ} = 50^{\circ} \dots (1)$

 $\angle QRU = \angle PQR = 110^{\circ} \dots [Alternate interior angles]$

$$\therefore \angle ORS + \angle SRU = 110^{\circ}$$

 $^{...}$ $^{...}$ QRS + 50° = 110° ... [Using (1)]

$$\therefore \angle QRS = 110^{\circ} - 50^{\circ} = 60^{\circ}$$

62. Lines AB and CD intersect at O $\therefore \angle AOC = \angle BOD \dots$ [Vertically opposite angles] But $\angle BOD = 40^{\circ} \dots [Given] \dots (1)$ $\therefore \angle AOC = 40^{\circ} \dots (2)$ Now, $\angle AOC + \angle BOE = 70^{\circ}$ $\Rightarrow 40^{\circ} + \angle BOE = 70^{\circ}$ $\therefore \angle BOE = 70^{\circ} - 40^{\circ}$ $\therefore \angle BOE = 30^{\circ}$ Again, Reflex $\angle COE = \angle COD + \angle BOD + \angle BOE$ $= \angle COD + 40^{\circ} + 30^{\circ} \dots [Using (1) and (2)]$ = $180^{\circ} + 40^{\circ} + 30^{\circ} \dots$ [As ray OA stands on the line CD] $= 250^{\circ}$ $\therefore \angle AOC + \angle AOD = 180^{\circ}$ [Linear Pair Axiom] ∴∠COD = 180° \Rightarrow a = 2k, b = 3k Putting the values of a and b in (1), we get $2k + 3k = 90^{\circ}$ $5k = 90^{\circ} = k = \frac{90^{\circ}}{5}$ \Rightarrow k = 18^o $a = 2k = 2 (18^{\circ}) = 36^{\circ} and b = 3k = 3(18^{\circ}) = 54^{\circ} \dots (2)$ As ray OX is perpendicular to line MN $\therefore \angle XOM + \angle XON = 180^{\circ} \dots [Linear Pair Axiom]$ $b + c = 180^{\circ}$ $\therefore 54^{\circ} + c = 180^{\circ} \dots [Using (2)]$ $\therefore c = 180^{\circ} - 54^{\circ} \therefore c = 126^{\circ}$ 63. d = a . . . [Vertically opposite angles] $= 50^{\circ}$ $b + c + d = 180^{\circ} \dots [A \text{ straight line angle} = 180^{\circ}]$ $\therefore 90^{\circ} + c + 50^{\circ} = 180^{\circ}$ $\therefore c + 140^{\circ} = 180^{\circ}$ $\therefore c = 180^{\circ} - 140^{\circ}$ $\therefore c = 40^{\circ}$ e = b . . . [Vertically opposite angles] $= 90^{\circ}$ f = c . . . [Vertically opposite angles] $= 40^{\circ}$

64. Through point M draw a line AB parallel to the line PQ as shown in Fig. Thus, we have

$$\Rightarrow$$
 AB || RS

Now, AB || PQ and \angle QXM and \angle XMB are interior angles on the same side of the transversal XM.

 $\therefore \angle QXM + \angle XMB = 180^{\circ}$ $\Rightarrow 135^{\circ} + \angle XMB = 180^{\circ}$ $\Rightarrow \angle XMB = 180^{\circ} - 135^{\circ} = 45^{\circ}$ Now, AB || RS and \angle BMY and \angle MYR are alternate angles. $\therefore \angle BMY = \angle MYR$ $\Rightarrow \angle BMY = 40^{\circ}$ Hence, $\angle XMY = \angle XMB + \angle BMY = 45^{\circ} + 40^{\circ} = 85^{\circ}$ 65. Given AD is transversal intersect two lines PQ and RS To prove PQ || RS Proof: BE bisects ABQ $\angle 1 = \angle ABE = \angle EBQ = \frac{1}{2} \angle ABQ$...(i) Similarity CG bisects ∠ BCS $\therefore \angle 2 = \frac{1}{2} \angle BCS$...(ii) But BE || CG and AD is the transversal $\therefore \angle 1 = \angle 2$ $\therefore \frac{1}{2} \angle ABQ = \frac{1}{2} \angle BCS$ [by (i) and (ii)] $\Rightarrow \angle ABQ = \angle BCS$ [:: corresponding angles are equal] \therefore PQ || RS 66. Draw QN \perp AB Angle of incident = Angle of reflection . . . [by law of reflection] $\therefore \angle PQN = \angle NQR$ $\angle PQR = 124^{\circ} \dots [Given]$ $\therefore \angle PQN + \angle NQR = 124^{\circ}$ $\therefore \angle NQR + \angle NQR = 124^{\circ} \dots [As \angle PQN = \angle NQR]$ $\therefore 2\angle NQR = 124^{\circ}$ $\therefore \angle NQR = \frac{124^0}{2} = 62^\circ$ $\therefore \angle NOB - \angle ROB = 62^{\circ}$ $\therefore 90^{\circ} - \angle ROB = 62^{\circ}$ $\therefore \angle ROB = 90^{\circ} - 62^{\circ} = 28^{\circ}$ 67. Let AB and CD be two intersecting lines intersects at O.

Let $\angle BOC = 90^{\circ}$ We have to prove that each other angles i.e. $\angle AOC \angle AOD$ and $\angle BOD$ is a right angle. $\angle AOD = \angle BOC \dots$ [Vertically opposite angles] = 90°

 $\angle AOC + \angle BOC = 90^{\circ} \dots [A \text{ straight line angle} = 180^{\circ}]$ $\angle AOC + 90^{\circ} = 180^{\circ}$ $\angle AOC = 180^{\circ} - 90^{\circ} = 90^{\circ}$ \angle BOD = \angle AOC [Vertically opposite angles] $= 90^{\circ}$ 68. a + b = 180° . . . [Linear Pair Axiom] . . . (1) $a = b + \frac{1}{3}$ (a right angle) . . . [Given] $a = b + \frac{1}{3}(90^0) \dots$ [right angle = 90^o] $\therefore a + b = 30^{\circ}$ $\therefore a - b = 30^{\circ} \dots (2)$ $2a = 180^{\circ} + 30^{\circ} \dots$ [Adding (1) and (2)] $\therefore 2a = 210^{\circ}$ $\therefore a = \frac{210^0}{2} = 105^0$ $2b = 180^{\circ} - 30^{\circ} \dots$ [Subtracting (2) from (1)] $\therefore 2b = 150^{\circ}$ $\therefore b = \frac{150^0}{2} = 75^0$ 69. We need to prove that $\angle PQS = \angle PRT$ We are given that $\angle PQR = \angle PRQ$ From the given figure, we can conclude that \angle PQS and \angle PQR, and \angle PRQ and \angle PRT form a linear pair. We know that sum of the angles of a linear pair is 180° $\therefore \angle PQS + \angle PQR = 180^{\circ}$, and ...(i) $\angle PRQ + \angle PRT = 180^{\circ}$(ii) From equation (i) and (ii), we can conclude that $\angle PQS + \angle PQR = \angle PRQ + \angle PRT.$ But, $\angle PQR = \angle PRQ$ $\therefore \angle PQS = \angle PRT$ Hence, proved. 70. $\angle AOC + \angle BOC = 180^{\circ} \dots$ [Linear pair] $\angle AOC + \angle BOE + \angle COE = 180^{\circ} \dots [As \angle BOC = \angle BOE + \angle COE]$ $\therefore 2x^{0} + x^{0} + 90^{0} = 180^{0}$ $\therefore 3x^{0} + 90^{0} = 180^{0}$ $\therefore 3x^{0} = 180^{0} - 90^{0} = 90^{0}$ $\therefore \mathbf{x}^{\mathbf{0}} = \frac{90^0}{3} = 30^{\mathbf{0}} \therefore \mathbf{x} = 30$ \angle BOD = \angle AOC . . . [Vertically opposite angles] $\therefore y^0 = 2x^0 = 2(30^0) = 60^0$ $\therefore y = 60$ $\angle AOD = \angle COB \dots$ [Vertically opposite angles] $\therefore \angle AOD = \angle COE + \angle EOB$ $\therefore z^{0} = 90^{0} + x^{0} = 90^{0} + 30^{0} = 120^{0}$ ∴ z = 120 35° 71. 👞

OF bisects $\angle BOD \dots$ [Given]

$$\angle BOF = \angle DOF = 35^{\circ}$$
$$\angle COE = \angle DOF = 35^{\circ}$$
$$\angle EOF = 180^{\circ} \dots [A \text{ straight angle} = 180^{\circ}]$$
$$\therefore \angle EOC + \angle BOC + \angle BOF = 180^{\circ}$$
$$\therefore 35^{\circ} + \angle BOC + 35^{\circ} = 180^{\circ}$$
$$\therefore \angle BOC = 180^{\circ} - 70^{\circ} = 110^{\circ}$$
$$\angle AOD = \angle BOC \dots [Vertically opposite angles]$$
$$= 110^{\circ}$$

72. We know that if two lines intersect, then the vertically-opposite angles are equal.

$$A$$

۸

 $\angle AOC = 90^{\circ}$, Then $\angle AOC = \angle BOD = 90^{\circ}$ And let $\angle BOC = \angle AOD = x^{\circ}$ Also, we know that the sum of all angles around a point is 360° $\Rightarrow 90^{\circ} + 90^{\circ} + x^{\circ} + x^{\circ} = 360^{\circ}$ $\Rightarrow 2x^{\circ} = 180^{\circ}$ $\Rightarrow x^{\circ} = 90^{\circ}$ Hence, $\angle BOC = \angle AOD = x^{\circ} = 90^{\circ}$ $\therefore \angle AOC = \angle BOD = \angle BOC = \angle AOD = 90^{\circ}$ Hence, the measure of each of the remaining angles is 90° .

Draw AB to meet CD in F. As AF || DE and transversal DF intersects them

 $\therefore \angle DFB = \angle EDF = 100^{\circ} \dots [Alternate Angles]$

 \angle DFB + \angle BFC = 180^o . . . [Linear pair axiom]

 $\therefore 100^{\circ} + \angle BFC = 180^{\circ}$

 $\therefore \angle BFC = 180^{\circ} - 100^{\circ} = 80^{\circ}$

 $\angle ABC + \angle FBC = 180^{\circ} \dots [Linear pair axiom]$

$$\therefore 110^{\circ} + \angle FBC = 180^{\circ}$$

$$\therefore \angle FBC = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

In
$$\triangle$$
BFC,

 \angle BCF + \angle BFC + \angle FBC = 180^o . . . [Sum of all the angles of a triangle]

$$\therefore x^{0} + 80^{0} + 70^{0} = 180^{0}$$

 $\therefore x^{0} + 150^{0} = 180^{0}$

$$\therefore x^{0} = 180^{0} - 150^{0} = 30^{0}$$

$$\therefore x = 30^{\circ}$$

74. Given: In figure, OD \perp OE (i.e. $\angle DOE = 90^{\circ}$), OD and OE are the bisectors of \angle AOC and \angle BOC. To prove: points A, O and B are collinear i.e., AOB is a straight line.

Proof: From the fig. we have ∠AOB comprising ∠AOC and ∠BOC such that OD and OE are the bisectors of these two angles $\angle AOB = \angle AOC + \angle BOC$ Since, OD and OE bisect angles \angle AOC and \angle BOC respectively. $\therefore \angle AOC = 2 \angle DOC$ (1) And $\angle COB = 2 \angle COE$ (2) On adding equations (1) and (2), we get $\angle AOC + \angle COB = 2 \angle DOC + 2 \angle COE$ $\Rightarrow \angle AOC + \angle COB = 2(\angle DOC + \angle COE)$ $\Rightarrow \angle AOC + \angle COB = 2 \angle DOE$ $\Rightarrow \angle AOC + \angle COB = 2 \times 90^{\circ} [::OD \perp OE]$ $\Rightarrow \angle AOC + \angle COB = 180^{\circ}$ $\therefore \angle AOB = 180^{\circ}$ So, $\angle AOC$ and $\angle COB$ are forming linear pair or AOB is a straight line. Hence, points A, O and B are collinear. 75. Since , $OP \| RS$ and transversal RN intersects them at N and R respectively \therefore $\angle RNP = \angle SRN$ (Alternate interior angles) $\Rightarrow \angle RNP = 130^{\circ}$ \therefore $\angle PNQ = 180^{\circ} - 130^{\circ} = 50^{\circ}$ (Linear pair) $\angle OPQ = \angle PNQ + \angle PQN$ (Exterior angle property)

- $\Rightarrow \quad 110^\circ = 50^\circ + \angle PQN$
- \Rightarrow $\angle PQN = 110^{\circ} 50^{\circ} = 60^{\circ}$
- Also, $\angle PQN = \angle PQR$ (see figure)
- $\therefore \angle PQR = 60^{\circ}$