LINES AND ANGLES QUESTIONS BANK

	If one of the angles of a triangle is 130°, then the angle between the bisectors of the other two angles can be a) 50° b) 155° c) 145° d) 65°	[1]
2	The measure of an angle is five times its complement. The angle measures a) 75° b) 65° c) 25° d) 35°	[1]
3	Two complementary angles are such that twice the measure of the one is equal to three times the measure of the other. The larger of the two measures. a) 54° b) 63° c) 72° d) 36°	$[1]$
4	When two straight lines intersect: $1 . \quad$ Adjacent angles are complementary $2 . \quad$ Adjacent angles are supplementary. $3 . \quad$ Opposite angles are equal. $4 . \quad$ Opposite angles are supplementary.	
Of these statements		

	a) (ii) and (iv) are correct b) (i) and (iv) are correct c) (ii) and (iii) are correct d) (i) and (iii) are correct	
5	Two lines and intersect at. If $\angle+\angle+\angle=270^{\circ}$, then $\angle=$ a) 90° b) 70° c) 80° d) 180°	[1]
6	The angles of a triangle are in the ratio $5: 3: 7$, the triangle is a) An isosceles triangle. b) An obtuse angled triangle c) A right triangle d) An acute angled triangle	[1]
7	If $\angle A=4 \angle B=6 \angle C$, then $A: B: C$? a) $3: 4: 6$ b) $2: 3: 4$ c) $6: 4: 3$ d) $12: 3: 2$	[1]
8	Two straight lines and cut each other at. If $\angle=63^{\circ}$, then $\angle=$ a) 117° b) 17° c) 153° d) 63°	[1]
9	Two planes intersect each other to form a : a) point	[1]

	b) plane c) angle d) Straight line	
10	An angle is one - fifth of its supplement. The measure of the angle is :- a) 15° b) 75° c) 150° d) 30°	[1]
11	If the supplement of an angle is three times its complement, find the angle.	[1]
12	Find the angle whose complement is equal to the angle itself.	[1]
13	An angle is 14° more than its complementary angle. What is its measure?	[1]
14	Write the supplement of the angle: 138°	[1]
15	If the supplement of an angle is two - third of itself. Determine the angle and its supplement.	[1]
16	Write the complement of the angle: 20°	[1]
17	Find the supplement of theangle 42°.	[1]
18	Find the measure of an angle whose supplement is equal to the angle itself.	[1]
19	Find the measure of the supplementary angle of 68°.	[1]
20	Write the supplement of the angle: 54°	[1]
21	Find the measure of the supplementary angle of 125°	[1]
22	Find the measure of the complementary angle of 72°.	[1]
23	An angle is 20° less than its complement. Find its measure.	[1]
24	Write the complement of the angle: 30°	[1]
25	If the complement of an angle is equal to the supplement of the thrice of it. Find the measure of theangle.	[1]
26	In Fig, OA, OB are opposite rays and $\angle \mathrm{AOC}+\angle \mathrm{BOD}=90^{\circ}$. Find $\angle \mathrm{COD}$.	[2]

27	In a figure, $\mathrm{x}=\mathrm{y}$ and $\mathrm{a}=\mathrm{b}$. Prove that $\mathrm{l} \\| \mathrm{n}$.	[2]
28	$\angle \mathrm{AOC}$ and $\angle \mathrm{AOB}$ are right angles, show that BOC is a line.	[2]
29	In the given figure, $A B$ is a mirror, $P Q$ is the incident ray and $Q R$, the reflected ray. If $\angle \mathrm{PQR}=112^{\circ}$, find $\angle \mathrm{PQA}$.	[2]
30	In the adjoining figure, what value of x will make AOB a straight line?	[2]
31	Prove that if two lines intersect each other then vertically opposite angleare equal.	[2]
32	In figure $, A B, C D$ and $P Q$ are three lines concurrent at 0 . If $\angle A O P=5 y, \angle Q O D=2 y$ and $\angle B O C=5 y$. Find the value of y.	[2]
33	If the ratio between two complementary angles is $2: 3$, then find the angles.	[2]
34	In the adjoining figure, AOB is a straight line. Find the value of x. Hence, find \angle $\mathrm{AOC}, \angle \mathrm{COD}$ and $\angle \mathrm{BOD}$.	[2]
35	In figure,$\angle P O R$ and $\angle Q O R$ from a linear pair. If $a-b=80^{\circ}$, find the values of a and b .	[2]

36	Two complementary angles are in the ratio $4: 5$. Find the angles.	[2]		
37	In the given figure, the two lines AB and CD intersect at a point 0 such that $\angle \mathrm{BOC}$	[2]		
38	Find the angle whose complement is one third of its supplement.	[2]		
39	If the angles (2x-10) ${ }^{\circ}$ and ($\left.\mathrm{x}-5\right)^{\circ}$ are complementary angles, find x .	[2]		
40	Find the measure of an angle, if seven times its complement is 10° less than three times its supplement.	[2]		
41	In figure, if $\angle \mathrm{AOC}+\angle \mathrm{BOD}=70^{\circ}$, find $\angle \mathrm{COD}$.	[2]		
42	Rays $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$ and OE have the common initial point O . Show that $\angle \mathrm{AOB}+\angle$ $\mathrm{BOC}+\angle \mathrm{COD}+\angle \mathrm{DOE}+\angle \mathrm{EOA}=360^{\circ} \$ \wedge\{\$$	[2]		
43	In Fig., find the value of x.	[2]		
44	In the adjoining figure, what value of x will make AOB, a straight line?	[2]		
45	In the adjoining figure, $A O B$ is a straight line. Find $\angle A O C$ and $\angle B O D$.	[2]		
46	In the given figure, $O P, O Q, O R$ and $O S$ are four rays. Prove that $\angle P O Q+\angle R O Q+$ $\angle \mathrm{SOR}+\angle \mathrm{POS}=360^{\circ} .$	[3]		
47	If two lines intersect, prove that the vertically opposite angles are equal.	[3]		
48	Prove that the bisectors of a pair of vertically opposite angles are in the same straight line.	[3]		
49	In the given figure, if $A B\\|C D, C D\\| E F$ and $y: z=3: 7$, find x.	[3]		
50	In figure,$\angle \mathrm{AOF}$ and $\angle \mathrm{FOG}$ form a linear pair, $\angle \mathrm{EOB}=\angle \mathrm{FOC}=90^{\circ}$ and $\angle \mathrm{DOC}=$	[3]		

	$\angle \mathrm{FOG}=\angle \mathrm{AOB}=30^{\circ}$. Find the measures of FOE, COB and DOE		
51	Two lines AB and CD intersect at a point 0 such that $\angle B O C+\angle A O D=280^{\circ}$, as shown in the figure. Find all the four angles.	[3]	
52		[3]	
53	Prove that if the arms of an angle are respectively perpendicular to the arms of another angle, then the angles are either equal or supplementary.	[3]	
54	In each of the figures given below, $A B \\| C D$. Find the value of x° in each other case.	[3]	
55	In each of the figures given below, $A B \\| C D$. Find the value of x° ineach case.	[3]	
56	In figure $\angle \mathrm{ABC}=65^{\circ}, \angle \mathrm{BCE}=30^{\circ}, \angle \mathrm{DCE}=35^{\circ}$ and $\angle \mathrm{CFE}=145^{\circ}$. Prove that	[3]	
57	In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays $O P$ and $O R$. Prove that $\angle R O S=\frac{1}{2}(\angle Q O S-\angle P O S)$.	[3]	
58	In the given figure, $\mathrm{AB} \\| \mathrm{CD}, \angle A B O=40^{\circ}, \angle C D O=35^{\circ}$. Find the value of the reflex $\angle B O D$ and hence the value of x.	[3]	
59	In the given figure, $\mathrm{AB} \\| \mathrm{CD}$ and $\angle A O C=x^{\circ}$. If $\angle O A B=104^{\circ}$ and $\angle O C D=116^{\circ}$,	[3]	

	find the value of x .		
60	Fig., $A B\|\mid C D$ and $C D\| \mid E F$. Also, $E A \perp A B$. If $\angle B E F=55^{\circ}$, find the values of x, y and Z.	[3]	
61	In figure, if $\mathrm{PQ} \\| \mathrm{ST}, \angle \mathrm{PQR}=110^{\circ}$ and $\angle \mathrm{RST}=130^{\circ}$, find $\angle \mathrm{QRS}$.	[5]	
62	In figure, lines AB and CD intersect at 0 . If $\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$ and $\angle \mathrm{BOD}=40^{\circ}$, find $\angle B O E$ and reflex $\angle C O E$.	[5]	
63	In figure, three lines p, q and r are concurrent at O . If $\mathrm{a}=50^{\circ}$ and $\mathrm{b}=90^{\circ}$. Find c , d, e and f.	[5]	
64	In Fig., if $P Q \\| R S, \angle M X Q=135^{\circ}$ and $\angle M Y R=40^{\circ}$, find $\angle X M Y$.	[5]	
65	If a transversal intersects two lines such that the bisectors of a pair of corresponding angles are parallel, then prove that the two lines are parallel.	[5]	
66	In the following figure, PQ is an incident ray and QR is the reflected ray. If $\angle \mathrm{PQR}=$ 124°, then find $\angle R Q B$.	[5]	
67	One of the four angles formed by two intersecting lines is a right angle. Show that the other three angles will also be right angles.	[5]	
68	In figure, a is greater than b by one third of a right angle. Find the values of a and	[5]	

	b.		
69	In the given figure,$\angle \mathrm{PQR}=\angle \mathrm{PRQ}$, then prove that $\angle \mathrm{PQS}=\angle \mathrm{PRT}$	[5]	
70	In the figure, AB and CD are two straight lines, intersecting each other at a point. If $\angle \mathrm{COE}=90^{\circ}$. Find the values of x, y and z .	[5]	
71	AB, CD and EF are three concurrent lines passing through the point O such that $O F$ bisects $\angle B O D$. If $\angle B O F=35^{\circ}$. Find $\angle B O C$ and $\angle A O D$.	[5]	
72	If two straight lines intersect each other in such a way that one of the angles formed measures 90°, show that each of the remaining angles measures 90°	[5]	
73	In figure, $A B\|\mid D E$, find the value of x.	[5]	
74	In the below fig. If OD is the bisector ofAOC, OE is the bisector ofBOC and OD \perp OE. Show that the points A, O and B are collinear.	[5]	
75	In Fig. if PO\|	RS.Determine $\angle P Q R$.	[5]

