INVERSE TRIGONOMETRY FUNCTIONS QUESTION BANK Class 12 - Mathematics

1.	Domain of $f(x) = \sin^{-1}x - \sec^{-1}x$ is		[1]
	a) None of these	b) { 0, 1}	
	c) { -1 ,1}	d) 0 or 1	
2.	The value of $\cot(\sin^{-1}x)$ is		[1]
	a) $\frac{\sqrt{1-x^2}}{x}$	b) $\frac{x}{\sqrt{1+x^2}}$	
	c) $\frac{1}{x}$	d) $\frac{\sqrt{1+x^2}}{x}$	
3.	The principal value of $ an^{-1}\left(-\sqrt{3} ight)$ is		[1]
	a) $\frac{4\pi}{3}$	b) None of these	
	c) $\frac{2\pi}{3}$	d) $\frac{-\pi}{3}$	
4.	$\sin(\cot^{-1}x)$ is equal to		[1]
	a) None of these	b) $\frac{x}{\sqrt{1+x^2}}$	
	c) $\frac{1}{\sqrt{1+x^2}}$	d) $\sqrt{1+x^2}$	
5.	The greatest and least values of $(\sin^{-1}x)^2 + (\cos^{-1}x)^2$	are respectively	[1]
	a) $\frac{5\pi^2}{4}$ and $\frac{\pi^2}{8}$	b) $\frac{\pi}{2}$ and $\frac{-\pi}{2}$	
	c) $\frac{\pi^2}{4}$ and 0	d) $\frac{\pi^2}{4}$ and $\frac{-\pi^2}{4}$	
6.	Range of coses ⁻¹ x is		[1]
	a) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$	b) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ - {0}	
	c) None of these	d) $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$	
7.	The principal value of sec ⁻¹ $\left(rac{-2}{\sqrt{3}} ight)$ is		[1]
	a) $\frac{5\pi}{6}$	b) $\frac{7\pi}{6}$	
	c) $\frac{\pi}{6}$	d) $\frac{-\pi}{6}$	
8.	The principal value of $\sin^{-1}\left(\sinrac{2\pi}{3} ight)$ is		[1]
	a) None of these	b) $\frac{5\pi}{3}$	
	c) $\frac{\pi}{3}$	d) $\frac{2\pi}{3}$	

9. The principal value of $cosec^{-1}(2)$ is

a)
$$\frac{2\pi}{3}$$
 b) $\frac{\pi}{3}$

[1]

	C) $\frac{5\pi}{6}$	d) $\frac{\pi}{6}$	
10.	The value of $\sin\!\left(2\mathrm{cos}^{-1}\left(-rac{3}{5} ight) ight)$ is		[1]
	a) None of these	b) $-\frac{24}{25}$	
	c) $\frac{7}{25}$	d) $\frac{24}{25}$	
11.	$ an^{-1}\sqrt{3}-~ m sec^{-1}(-2)$ is equal to		[1]
	a) <i>π</i>	b) $\frac{2\pi}{3}$	
	c) $-\frac{\pi}{3}$	d) $\frac{\pi}{3}$	
12.	Domain of sec ⁻¹ x is		[1]
	a) [-1, 1]	b) R - (-1, 1)	
	c) R - {0}	d) R - [-1, 0]	
13.	The value of the expression $\sin [\cot^{-1} (\cos (\tan^{-1} 1))]$] is	[1]
	a) $\sqrt{\frac{2}{3}}$	b) 0	
	c) $\frac{1}{\sqrt{3}}$	d) 1	
14.	Domain of cos ⁻¹ x is		[1]
	a) [-1, 0]	b) [0, 1]	
	c) None of these	d) [-1, 1]	
15.	Which of the following is the principal value branch	of $\cos^{-1}x$?	[1]
	a) $(0,\pi) - \left\{ \frac{\pi}{2} \right\}$	b) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$	
	c) (0, π)	d) [0, π]	
16.	The value of sin (2 sin ^{-1} (0.6)) is		[1]
	a) 0.96	b) 0.48	
	c) sin 1.2	d) 1.2	
17.	The value of $\cos^{-1}(-1) - \sin^{-1}(1)$ is		[1]
	a) $\frac{3\pi}{2}$	b) <i>π</i>	
	c) $-\frac{3\pi}{2}$	d) $\frac{\pi}{2}$	
18.	The value of cot $\left[\cos^{-1}\left(\frac{7}{25}\right)\right]$ is		[1]
	a) $\frac{25}{24}$	b) $\frac{24}{25}$	
	c) $\frac{7}{24}$	d) $\frac{25}{7}$	
19.	Range of sec ⁻¹ x is		[1]
	a) [0, <i>π</i>]	b) $[0,\pi] - \left\{\frac{\pi}{2}\right\}$	
	c) None of these	d) $\left[0, \frac{\pi}{2}\right]$	
20.	The principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$ is		[1]
	a) $\frac{-\pi}{4}$	b) None of these	

	c) $\frac{5\pi}{4}$	d) $\frac{3\pi}{4}$	
21.	The principal value of $\sin^{-1}\left(\frac{-1}{2}\right)$ is		[1]
	a) $\frac{-\pi}{6}$	b) $\frac{7\pi}{6}$	
	c) $\frac{5\pi}{6}$	d) None of these	
22.	Range of sin ⁻¹ x is		[1]
	a) None of these	b) [0, <i>π</i>]	
	$C)\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$	d) $\left[0,\frac{\pi}{2}\right]$	
23.	The principal value of $\sin^{-1}(\sin \frac{3\pi}{4}) = \dots$		[1]
	a) $\frac{\pi}{4}$	b) $\frac{3\pi}{4}$	
	c) $\frac{5\pi}{4}$	d) $\frac{-\pi}{4}$	
24.	The domain of the function defined by $f(x) = \sin^{-1}x - \frac{1}{2}x^{-1}$	+ cosx is	[1]
	a) [-1, 1]	b) ϕ	
	c) $(-\infty, \infty)$	d) [-1, <i>π</i> + 1]	
25.	$\cos^{-1}(\cos x) = x$ is satisfied by,		[1]
	a) $x\in [-1,1]$	b) $x\in [0,\pi]$	
	c) None of these	d) $x\in [0,1]$	
26.	The domain of the function $\cos^{-1}(2x - 1)$ is		[1]
	a) [0, <i>π</i>]	b) [-1, 1]	
	c) [0, 1]	d) (-1, 0)	
27.	The value of $\sin^{-1}\left(\cosrac{3\pi}{5} ight)$ is:		[1]
	a) $\frac{-3\pi}{5}$	b) $\frac{-\pi}{10}$	
	c) $\frac{\pi}{10}$	d) $\frac{3\pi}{5}$	
28.	$cot^{-1}(21) + cot^{-1}(13) + cot^{-1}(-8)$ is equal to		[1]
	a) $\cot^{-1}26$	b) <i>π</i>	
	c) 0	d) None of these	
29.	If $\sin^{-1} x = y$, then		[1]
	a) $-rac{\pi}{2} \leq y \leq rac{\pi}{2}$	b) $-rac{\pi}{2} < y < rac{\pi}{2}$	
	c) $0 \leq y \leq \pi$	d) $0 < y < \pi$	
30.	The principal value of the expression \cos^{-1} [cos (– 68	0°)] is	[1]
	a) $\frac{\pi}{9}$	b) $\frac{-2\pi}{9}$	
	c) $\frac{34\pi}{9}$	d) $\frac{2\pi}{9}$	
31.	Write the principal value of $\tan^{-1}\left[\sin\left(\frac{-\pi}{2}\right)\right]$		[1]
32.	Write the value of $\sin \left[\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right]$.		[1]
33.	$\tan^{-1}\left(\tan\frac{3\pi}{4}\right) =$		[1]

3/5

34.	Evaluate cos ⁻¹ (cos 12)	[1]
35.	Find the principal value of $cosec^{-1}$ (2)	[1]
36.	Find the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$.	[1]
37.	Find the principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$	[1]
38.	Write the range of tan ⁻¹ x.	[1]
39.	Find the principal value of $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$.	[1]
40.	Evaluate: $\cos^{-1}\left(\cos\frac{5\pi}{4}\right)$	[1]
41.	Write the principal value of $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right)$.	[1]
42.	Find the principal value of $\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right)$	[1]
43.	Evaluate: $\sin^{-1}\left(\sin\frac{\pi}{6}\right)$	[1]
44.	Find the domain of $f(x) = \sin^{-1} x + \cos x$.	[1]
45.	Evaluate cos ⁻¹ (cos5)	[1]
46.	$\sin^{-1}\left(\frac{-1}{2}\right)$	[2]
47.	$\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$	[2]
48.	Find the value of $\tan^{-1}\left(\tan\frac{9\pi}{8}\right)$	[2]
49.	Evaluate $\cos\left[\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right) + \frac{\pi}{6}\right]$	[2]
50.	Write the value of $\sin^{-1}\left(\frac{1}{3}\right) - \cos^{-1}\left(-\frac{1}{3}\right)$	[2]
51.	Evaluate: sin ⁻¹ (sin(-600°))	[2]
52.	Write the interval for the principal value of function and draw its graph: $\cot^{-1} x$.	[2]
53.	Write the interval for the principal value of function and draw its graph: $sec^{-1} x$.	[2]
54.	$\cot^{-1}\left(\sqrt{3} ight)$	[2]
55.	$ an^{-1}\left(anrac{3\pi}{4} ight)=?$	[2]
56.	Find the principal value of $\cos^{-1}(\frac{1}{2})$.	[2]
57.	For the principal values, evaluate $\sin^{-1}igl[\cosigl\{2cosec^{-1}(-2)igr\}igr]$	[2]
58.	$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$	[2]
59.	Which is greater, $\tan 1$ or $\tan^{-1} 1$?	[2]
60.	Write the interval for the principal value of function and draw its graph: $cosec^{-1} x$.	[2]
61.	Write the interval for the principal value of function and draw its graph: $tan^{-1} x$.	[2]
62.	Find the principal value of cosec ⁻¹ (-2).	[2]
63.	tan ⁻¹ (-1)	[2]
64.	Find the principal value of $\tan^{-1}(\sqrt{3})$.	[2]
65.	Find the value of $\sin\left[2\cot^{-1}\left(\frac{-5}{12}\right)\right]$	[2]
66.	Assertion (A): We can write $\sin^{-1}x = (\sin x^{-1})$.	[1]
	Reason (R): Any value in the range of principal value branch is called principal value of that inverse	
	trigonometric function.	
	a) Both A and R are true and R is the correct b) Both A and R are true but R is not the	

explanation of A.

b) Both A and R are true but R is not the correct explanation of A.

	c) A is true but R is false.	d) A is false but R is true.	
67.	Assertion (A): Principal value of $\tan^{-1}(-\sqrt{3})$ is $-\frac{1}{2}$	$\frac{\pi}{3}$.	[1]
	Reason (R): $\tan^{-1}: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ so for any $x \in \mathbb{R}$, $\tan^{-1}(x)$ represent an angle in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.		
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
68.	Assertion (A): Domain of $f(x) = \sin^{-1}x + \cos x$ is [-1, 1]. Reason (R): Domain of a function is the set of all possible values for which function will be defined.		[1]
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
69.	Assertion (A): Function $f : R \to R$ given by $f(x) = \sin x$ is not a bijection. Reason (R): A function $f : A \to B$ is said to be bijection if it is one-one and onto.		[1]
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
70.	State true or false:		[1]
	The minimum value of n for which $\tan^{-1}\frac{n}{\pi} > \frac{\pi}{4}$,	$n\in N$, is valid is 5.	
71.	State true or false:		[1]
	The domain of the function defined by $f(x) = \sin^{-1}x$	t + cosx is [-1, 1]	
72.	State true or false:		[1]
70	All trigonometric functions have inverse over their	respective domains.	[1]
/3.	State true or faise:		[1]
74	The domain of $\sin^{-2} x$ is $[0, 1]$		[1]
/4.	The domain of trigonometric functions can be restr	icted to any one of their branch (not necessarily principal	[1]
	value) in order to obtain their inverse functions.	teres to any one of their oranen (not necessarily principal	
75.	State true or false:		[1]
	The graph of inverse trigonometric function can be	obtained from the graph of their corresponding	

trigonometric function by interchanging x and y axes.