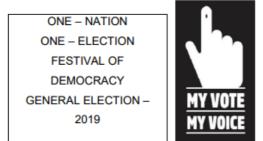
## RELATIONS AND FUNCTIONS Class 11 - Mathematics

| 1.  | R = {(1, 1), (2, 2), (1, 2), (2, 1), (2, 3)} be a relation on A, then R is                                 |                                                                                    | [1] |
|-----|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----|
|     | a) not anti symmetric                                                                                      | b) symmetric                                                                       |     |
|     | c) anti symmetric                                                                                          | d) Reflexive                                                                       |     |
| 2.  | The domain and range of the real function f defined b                                                      | by f (x) = $\frac{4-x}{x-4}$ is given by                                           | [1] |
|     | a) Clearly, Domain = R - {-4}, Range = {-1}                                                                | b) Domain = $R - \{1\}$ , Range = $R$                                              |     |
|     | c) Domain = R, Range = {-1, 1}                                                                             | d) Domain = R - {4}, Range = {-1}                                                  |     |
| 3.  | The domain of the function f given by f (x) = $\frac{x^2+2x+1}{x^2-x-6}$                                   |                                                                                    | [1] |
|     | a) R – {–3, 2}                                                                                             | b) R – [3, – 2]                                                                    |     |
|     | c) R – {-2, 3}                                                                                             | d) R – (-3, - 2)                                                                   |     |
| 4.  | If $f(x) = \log\left(\frac{1+x}{1-x}\right)$ and $g(x) = \frac{3x+x^3}{1+3x^2}$ Then $f(g)(x)$ is equal to |                                                                                    |     |
|     | a) f (3x)                                                                                                  | b) -f (x)                                                                          |     |
|     | c) $[f(x)]^3$                                                                                              | d) 3 f(x)                                                                          |     |
| 5.  | Let A = { 2, 3, 6 }. Which of the following relations                                                      | s on A are reflexive?                                                              | [1] |
|     | a) None of these                                                                                           | b) R <sub>1</sub> = {( 2,2 ) , ( 3,3 ) , ( 6,6 )}                                  |     |
|     | c) $R_2 = \{(2,2), (3,3), (3,6), (6,3)\}$                                                                  | d) $R_3 = \{(2,2), (3,6), (2,6)\}$                                                 |     |
| 6.  | The minimum value of sin $x + \cos x$ is                                                                   |                                                                                    | [1] |
|     | a) $-2\sqrt{2}$                                                                                            | b) $\sqrt{2}$                                                                      |     |
|     | c) 0                                                                                                       | d) $-\sqrt{2}$                                                                     |     |
| 7.  | Let $R = \{(a, a), (b, b), (c, c), (a, b)\}$ be a relation on set $A = \{a, b, c\}$ . Then, R is           |                                                                                    | [1] |
|     | a) transitive                                                                                              | b) anti – symmetric                                                                |     |
|     | c) symmetric                                                                                               | d) reflexive                                                                       |     |
| 8.  | Consider the non – empty set consisting of children i                                                      | n a family and a relation R defined as aRb if a is brother of                      | [1] |
|     | b. Then R is                                                                                               |                                                                                    |     |
|     | a) both symmetric and transitive                                                                           | b) transitive but not symmetric                                                    |     |
|     | c) neither symmetric nor transitive                                                                        | d) symmetric but not transitive                                                    |     |
| 9.  | The domain of definition of the function $f(x) = \log  x $                                                 | is                                                                                 | [1] |
|     | a) R                                                                                                       | b) $(0,\infty)$                                                                    |     |
|     | c) $(-\infty,0)$                                                                                           | d) R - {0}                                                                         |     |
| 10. | If f is a real-valued function given by $f(x) = 27x^3 + $                                                  | $\frac{1}{x^3}$ and $\alpha$ , $\beta$ are roots of $3x + \frac{1}{x} = 2$ . Then, | [1] |
|     |                                                                                                            |                                                                                    |     |

|     | a) $f(\alpha) = 10$                                                                                                                  | b) $f(eta)=-10$                                                                                          |     |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----|--|
|     | c) None of these                                                                                                                     | d) $f(lpha)  eq f(eta)$                                                                                  |     |  |
| 11. | The domain of the function $f(x) = \sqrt{5 x  - x^2 - 6}$                                                                            | is                                                                                                       | [1] |  |
|     | a) $[-3,-2)\cup [2,3)$                                                                                                               | b) $[-3,-2] \cup [2,3]$                                                                                  |     |  |
|     | c) None of these                                                                                                                     | d) (-3, 2) ∪ (2, 3)                                                                                      |     |  |
| 12. | $f: R \rightarrow R: f(x) = x^2$ is                                                                                                  |                                                                                                          | [1] |  |
|     | a) many-one and into                                                                                                                 | b) one-one and into                                                                                      |     |  |
|     | c) one-one and onto                                                                                                                  | d) many-one and onto                                                                                     |     |  |
| 13. | 3. The relation R defined on the set A = {1,2, 3, 4, 5} by R = {(a, b) : $ a^2 - b^2  < 16$ }, is given by                           |                                                                                                          |     |  |
|     | a) {(2, 2), (3, 2), (4, 2), (2, 4)}                                                                                                  | b) R = {(1, 1), (2, 1), (3, 1), (4, 1), (2, 3),(2, 2),<br>(3, 2), (4, 2), (2, 4),(3, 3), (5, 4), (3, 4)} |     |  |
|     | c) none of these                                                                                                                     | d) {(3, 3), (4, 3), (5, 4), (3, 4)}                                                                      |     |  |
| 14. | The domain of the function $f(x) = \sqrt{rac{(x+1)(x-3)}{x-2}}$ is                                                                  |                                                                                                          | [1] |  |
|     | a) $(-1,2)\cup [3,\infty)$                                                                                                           | b) $[-1,2)\cup [3,\infty)$                                                                               |     |  |
|     | c) None of these                                                                                                                     | d) $[-1,2]\cup[3,\infty)$                                                                                |     |  |
| 15. | The range of the function $f(x) = \frac{x}{ x }$ is                                                                                  |                                                                                                          | [1] |  |
|     | a) {-1, 1}                                                                                                                           | b) R -{0}                                                                                                |     |  |
|     | c) R - {-1, 1}                                                                                                                       | d) None of these                                                                                         |     |  |
| 16. | If A = $[a, b]$ , B = $[c, d]$ , C = $[d, e]$ then {(a, c), (a, d),                                                                  | (a,e), (b,c), (b, d), (b, e)} is equal to                                                                | [1] |  |
|     | a) $A \cap (B \ \cup C)$                                                                                                             | b) $A	imes (B\ \cap C)$                                                                                  |     |  |
|     | c) $A 	imes (B \ \cup C)$                                                                                                            | d) $A\cup (B\ \cap C)$                                                                                   |     |  |
| 17. | If A = {(x, y) : $x^2 + y^2 = 5$ } and B = {(x, y) : $2x = 5y$                                                                       | $a_{A}$ , then $A \cap B$ contains                                                                       | [1] |  |
|     | a) two points                                                                                                                        | b) one-point                                                                                             |     |  |
|     | c) infinite points                                                                                                                   | d) no point                                                                                              |     |  |
| 18. | The relation $R = \{1, 1\}, (2, 2), (3, 3)\}$ on the set $\{1, 2\}$                                                                  | 2, 3) is                                                                                                 | [1] |  |
|     | a) an equivalence relation                                                                                                           | b) reflexive relation only                                                                               |     |  |
|     | c) symmetric relation only                                                                                                           | d) transitive relation only                                                                              |     |  |
| 19. | Let R be the relation over the set of all straight lines in a plane such that $l_1 R l_2 \Leftrightarrow l_1 \perp l_2$ . Then, R is |                                                                                                          | [1] |  |
|     | a) symmetric and transitive but not Reflexive                                                                                        | b) Reflexive and transitive but not symmetric                                                            |     |  |
|     | c) Symmetric and reflexive but not transitive                                                                                        | d) Symmetric but neither reflexive nor transitive.                                                       |     |  |
| 20. | The domain of the function f defined by $f(x) = \sqrt{4 - 1}$                                                                        | $\overline{x} + rac{1}{\sqrt{x^2-1}}$ is equal to                                                       | [1] |  |
|     | a) $(-\infty,-1)\cup [1,4)$                                                                                                          | b) $(-\infty,-1]\cup(1,4)$                                                                               |     |  |
|     | c) $(-\infty,-1)\cup(1,4]$                                                                                                           | d) $(-\infty,-1)\cup [1,4]$                                                                              |     |  |
|     |                                                                                                                                      |                                                                                                          |     |  |

- 21. Let f and g be real functions defined by  $f(x) = \sqrt{x-1}$  and  $g(x) = \sqrt{x+1}$ . Find:  $(\frac{f}{g})(x)$  [1]
- 22. Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16} Determine which of the following sets are functions from X to [1]
  Y. f<sub>3</sub> = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}.
- 23. Let f and g be two real function defined by  $f(x) = \frac{1}{x+4}$  and  $g(x) = (x+4)^3$  find the  $\frac{1}{f}$ . [1]
- 24. Write the relation  $R = \{(x, x^3) : x \text{ is a prime number less than 10}\}$  in roster form. [1]
- 25. If A = {a, b, c, d}, B = (p, q, r, s}, then which are relations from A to B?  $R_4 = \{(a, p), (q, a), (b, s), (s, b)\}$ . [1]
- 26. If  $R_1 = \{(x, y) | y = 2x + 7, where x \in R \text{ and } -5 \le x \le 5\}$  is a relation. Then find the domain and Range of  $R_1$ . [1]  $\begin{cases} x^2, \text{ when } x < 0 \end{cases}$ [1]


27. If f (x) = 
$$\begin{cases} x, \text{ when } 0 \le x < 1 \text{ , Find f (1/2).} \\ \frac{1}{x}, \text{ when } x > 1 \end{cases}$$

28. Let 
$$f : R \to R$$
:  $f(x) = x^3 + 1$  and  $g : R \to R : g(x) = (x + 1)$ . Find:  $\left(\frac{f}{g}\right)(x)$  [1]

- 29. Express {(x, y) :  $x^2 + y^2 = 25$ , where x,  $y \in W$ } as a set of ordered pairs. [1]
- 30. If R is a relation from set A =  $\{2, 4, 5\}$  to set B =  $\{1, 2, 3, 4, 6, 8\}$  defined by x R y  $\Leftrightarrow$  x divides y. Write R as a **[1]** set of ordered pairs.
- 31. If A = [1, 3, 5] and B = [2, 3], then find  $B \times A$ .
- 32. Let  $f : \mathbb{R} \to \mathbb{R}$ :  $f(x) = \frac{x}{c}$ , where c is a constant. Find: (cf)(x)
- 33. If  $R = \{(x, y): x, y \in Z, x^2 + y^2 \le 4\}$  is a relation defined on the set Z of integers, then write domain of R. [1]
- 34. Let  $A = \{1, 2\}, B = \{2, 3, 4\}, C = \{4, 5\}$ . Find  $A \times (B \cap C)$ .

## 35. **Read the text carefully and answer the questions:**

A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever.



Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation 'R' is defined on I as follows:

 $R = \{(v_1, v_2) : v_1, v_2 \in I \text{ and both use their voting right in general election } -2019\}$ 

(i) Two neighbors X and  $Y \in I$ . X exercised his voting right while Y did not cast her vote in the general election – 2019. Which of the following is true?

d) (X, Y) ∉ R

| a) (X, X) $\in$ R | b) $(X, Y) \in R$ |
|-------------------|-------------------|
|                   |                   |

Prove that:  $(A \cap B) \times C = (A \times C) \cap (B \times C)$ .

c)  $(Y, X) \in \mathbb{R}$ 

36.

- 37. Let A = {2, 3, 5} and R = {(2, 3), (2, 5), (3, 3), (3, 5)}. Show that R is a binary relation on A. Find its domain [2] and range.
- 38. Find the values of a and b, when  $\left(\frac{a}{3} + 1, b \frac{1}{3}\right) = \left(\frac{5}{3}, \frac{2}{3}\right)$

39. Let 
$$A = \{-2, -1, 0, 1, 2\}$$
 and  $B = \{0, 1, 4, 9\}$ . Let  $R = \{(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)\}$  [2]

i. Show that R is a relation from A to B.

[2]

[2]

[1]

[1]

[1]

[1]

|     | ii. Find dom (R), range (R) and co-domain of R.                                                                                                                  |     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 40. | Find the domain and the range of the real function: $f(x) = \frac{1}{\sqrt{x^2-1}}$                                                                              | [2] |
| 41. | $\sqrt{x^2-1}$ Write the domain of the relation R defined on the set Z of integers as follows:                                                                   | [2] |
|     | $(a, b) \in R \Leftrightarrow a^2 + b^2 = 25$                                                                                                                    |     |
| 42. | Draw the graph of the constant functions $f(x) = -2$ .                                                                                                           | [2] |
| 43. | Let f, g be two real functions defined by $f(x) = \sqrt{x+1}$ and $g(x) = \sqrt{9-x^2}$ , then describe of the function $\frac{5}{g}$ .                          | [2] |
| 44. | Find the domain and the range of the real function: $f(x) = \sqrt{\frac{x-5}{3-x}}$                                                                              | [2] |
| 45. | Draw the graph of the smallest integer function $f(x) = [x]$                                                                                                     | [2] |
| 46. | Let R = [(x, y): x, y $\in$ Z and x <sup>2</sup> + y <sup>2</sup> = 25}. Express R and R <sup>-1</sup> as sets of ordered pairs. Show that R = R <sup>-1</sup> . | [2] |
| 47. | If $f(x) = 4x - x^2$ , $x \in R$ then write the value of $f(a + 1) - f(a - 1)$ .                                                                                 | [2] |
| 48. | Find the simplified form of                                                                                                                                      | [2] |
|     | $f(x)= x-2 + 2-x , 	ext{if} -3\leq x\leq 3.$                                                                                                                     |     |
| 49. | Draw the graph of the step function $f(x) = [x]$ .                                                                                                               | [2] |
| 50. | Find the domain of $f(x) = rac{1}{x+2}$ .                                                                                                                       | [2] |
| 51. | Let R be the relation on the set Z of all integers defined by                                                                                                    | [3] |
|     | $R = \{(x, y)   x-y \text{ is divisible by } n\}.$                                                                                                               |     |
|     | Prove that                                                                                                                                                       |     |
|     | (i) $(x,y)\in R\Rightarrow (y,x)\in R$ for all $x,y\in Z$                                                                                                        |     |
|     | (ii) (x, y) $\in R$ and (y, z) $\in R \Rightarrow (x, z) \in R$ for all x, y, z $\in R$                                                                          | (0) |
| 52. | Let $f = \left[\left(x, rac{x^2}{1+x^2} ight): x \in R ight]$ be a function from R into R. Determine the range of f.                                            | [3] |
| 53. | If $A \subseteq B$ , then prove that                                                                                                                             | [3] |
|     | $A	imes A=(A	imes B)\cap (B	imes A).$                                                                                                                            | [0] |
| 54. | Find the domain and the range of the real function, $f(x) = \frac{x^2 + 1}{x^2 - 1}$                                                                             | [3] |
| 55. | Find the domain and range of the real function, $f(x) = \frac{3}{2-x^2}$ .                                                                                       | [3] |
| 56. | Determine the domain and range of the relation R defined by $R = \{(x, x + 5) : x \in (0, 1, 2, 3, 4, 5)\}$                                                      | [3] |
| 57. | Let $f : \mathbb{R} \to \mathbb{R}$ : $f(x) = x^3$ for all $x \in \mathbb{R}$ . Find its domain and range. Also, draw its graph.                                 | [3] |
| 58. | A function f is defined by $f(x) = 2x - 5$ Write down the values of                                                                                              | [3] |
|     | i. f(0)                                                                                                                                                          |     |
|     | ii. f(7)                                                                                                                                                         |     |
|     | iii. f(-3)                                                                                                                                                       | [0] |
| 59. | Let A = {-2, -1, 0, 1, 2} and f : A $\rightarrow$ Z : f(x) = x <sup>2</sup> - 2x - 3. Find f(A).                                                                 | [3] |
| 60. | Let A and B be two sets such that $n(A) = 3$ and $n(B) = 2$ . If (x, 1), (y, 2), (z, 1) are in A × B., find A and B, where x, y and z are distinct elements.     | [3] |
| 61. | Let X = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2,11)}. Are the following true?                                        | [3] |
|     | (i) f is a relation from X to Y                                                                                                                                  |     |
|     | (ii) f is a function from X to Y. Justify.                                                                                                                       |     |
| 62. | Draw the graph of the function $f(x) = \begin{cases} 1 + 2x & x < 0 \\ 3 + 5x, & x \ge 0 \end{cases}$ . Also, find its range.                                    | [3] |
| 63. | Find the sum and the difference of the identity function and the modulus function.                                                                               | [3] |
| 64. | Write the domain and the range of the function, $f(x) = \sqrt{x - [x]}$                                                                                          | [3] |
| 65. | For any sets A, B and C, prove that: $A 	imes (B \cap C) = (A 	imes B) \cap (A 	imes C)$                                                                         | [3] |

4/5

66. If  $A = \{2, 3, 5\}$  and  $B = \{5, 7\}$ , find:

- i.  $A \times B$
- ii. B imes A
- iii. A imes A
- iv.  $B \times B$

67. Let R be relation defined on the set of natural number N as follows:

 $R = \{(x, y): x \in N, y \in N, 2x + y = 41\}$ . Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive.

68. If  $A = \{a,d\}$ ,  $B = \{b, c, e\}$  and  $C = \{b, c, f\}$ , then verify that

i.  $A \times (B \cup C) = (A \times B) \cup (A \times C)$ ii.  $A \times (B \cap C) = (A \times B) \cap (A \times C)$ 

- 69. Let A = R {3} and B = R- {1}. Consider the function of f: A  $\rightarrow$  B defined by f(x) =  $\frac{x-2}{x-3}$  is one one and [5] onto.
- 70. i. Let R be the relation on the set Z of all integers defined by  $R = \{(x, y): x y \text{ is divisible by } n\}$ . Prove that [5]
  - a.  $(x, y) \in R$   $\Rightarrow (y, x) \in R$  for all  $x, y \in Z$ . b.  $(x, y) \in R$  and  $(y, z) \in R$  $\Rightarrow (x, z) \in R$  for all  $x, y, z \in Z$ .

ii. Find the domain and range of the function  $f(x) = \frac{x^2-9}{x-3}$ . iii. Find the domain of the function  $f(x) = \frac{x^2+3x+5}{x^2+x-6}$ .

## 71. State True or False:

- (i) If  $A \subseteq B$ , then  $A \times C \subseteq B \times C$  for any set C. [1]
- (ii) In Arrow Diagram, we draw arrows from the first element to the second element of all ordered pairs [1] belonging to relation R.
- (iii) If  $A \subseteq B$ , then  $A \times A \subseteq (A \times B) \cap (B)$
- (iv) If A = {1, 3, 6} and B = {x, y}, then A  $\times$  B = {(1, x), (3, x), (3, y), (6, x)} [1]
- (v) The set of all ordered pairs (a, b) of elements  $a \in A$  and  $b \in B$  is called the cartesian product of sets A [1] and B and is denoted by  $A \times B$ .

[5]

[5]

[5]

[1]