Solution

RELATIONS AND FUNCTIONS

Class 11 - Mathematics

1. (a) not anti symmetric

Explanation: A relation R on a non empty set A is said to be reflexive if $x R x$ for all $x \in R$, Therefore , R is not reflexive.
A relation R on a non empty set A is said to be symmetric if $x R y \Leftrightarrow y R x$, for all $x, y \in R$. Therefore, R is not symmetric.
A relation R on a non empty set A is said to be antisymmetric if $x R y$ and $y R x \Rightarrow x=y$, for all $x, y \in R$. Therefore, R is not antisymmetric.
2. (d) Domain $=\mathrm{R}-\{4\}$, Range $=\{-1\}$

Explanation: We have, $\mathrm{f}(\mathrm{x})=\frac{4-x}{x-4}=-1$, for $\mathrm{x} \neq 4$
3. (c) $\mathrm{R}-\{-2,3\}$

Explanation: We have, $\mathrm{f}(\mathrm{x})=\frac{x^{2}+2 x+1}{x^{2}-x-6}$
$f(x)$ is not defined, if $x^{2}-x-6=0$
$\Rightarrow(\mathrm{x}-3)(\mathrm{x}+2)=0$
$\therefore \mathrm{x}=-2,3$
\therefore Domain of $\mathrm{f}=\mathrm{R}-\{-2,3\}$
4. (d) $3 f(x)$

Explanation: $\mathrm{f}(\mathrm{g}(\mathrm{x}))=\log \left(\frac{1+\mathrm{g}(\mathrm{x})}{1-\mathrm{g}(\mathrm{x})}\right)$
$=\log \left(\frac{1+\frac{3 x+x^{2}}{1+3 x^{2}}}{1-\frac{3 x+x^{2}}{1+3 x^{2}}}\right)$
$=\log \left(\frac{1+3 x^{2}+3 x+x^{3}}{1+3 x^{2}-3 x-x^{3}}\right)$
$=\log \left(\frac{1+x}{1-x}\right)^{3}=3 \log \left(\frac{1+x}{1-x}\right)$
$\mathrm{f}(\mathrm{g})(\mathrm{x})=3 \mathrm{f}(\mathrm{x})$
5. (b) $\mathrm{R}_{1}=\{(2,2),(3,3),(6,6)\}$

Explanation: R_{1} is a reflexive on A , because (a, a) $\in \mathrm{R}_{1}$ for each $\mathrm{a} \in \mathrm{A}$
6. (d) $-\sqrt{2}$

Explanation: Let $f(x)=\sin x+\cos x$
$\therefore f^{\prime}(x)=\cos x-\sin x$
$\Rightarrow f^{\prime \prime}(x)=-\sin x-\cos x$
Now, $f^{\prime}(x)=0$
$\Rightarrow \cos x-\sin x=0 \Rightarrow \sin x=\cos x \Rightarrow \tan x=1$
$\Rightarrow x=n \pi+\frac{\pi}{4}, \mathrm{n} \in \mathrm{z}$
At $\mathrm{x}=\pi+\frac{\pi}{4}$,
$\mathrm{f}^{\prime}(\mathrm{x})=-\sin \left(\pi+\frac{\pi}{4}\right)-\cos \left(\pi+\frac{\pi}{4}\right)$
$=\sin \left(\frac{\pi}{4}\right)+\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}>0$
$\therefore \mathrm{x}=\pi+\frac{\pi}{4}$ is point of minimum
Minimum value $=\sin \left(\pi+\frac{\pi}{4}\right)+\cos \left(\pi+\frac{\pi}{4}\right)$
$=-\sin \left(\frac{\pi}{4}\right)-\cos \left(\frac{\pi}{4}\right)$
$=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=-\frac{2}{\sqrt{2}}=-\sqrt{2}$
7. (d) reflexive

Explanation: Any relation R is reflexive if $x R x$ for all $x \in R$. Here, (a, a), (b, b), (c, c) $\in R$. Therefore, R is reflexive.
8. (b) transitive but not symmetric

Explanation: Consider the non - empty set consisting of children in a family and a relation R defined as aRb if a is brother of
b. Then R is not symmetric, because $a R b$ means a is brother of b, then, it is not necessary that b is also brother of a, it can be
the sister of a. Therefore, bRa is not true. Therefore, the relation is not symmetric. Again, if aRb and bRc is true, then aRc is also true. Therefore, R is transitive only.
9. (d) $\mathrm{R}-\{0\}$

Explanation: Since $\log x$ is defined for $x \geq 0$, therefore domain of $\log |x|$ is $R-\{0\}$
10. (b) $f(\beta)=-10$

Explanation: $3 \mathrm{x}+\frac{1}{x}=2$
Now, $\mathrm{f}(\mathrm{x})=\left(3 x+\frac{1}{x}\right)^{3}-3(3 x)\left(\frac{1}{x}\right)\left(3 x+\frac{1}{x}\right)$
Since, a, β are roots of $3 x+\frac{1}{x}=2$
So, $f(\alpha)=f(\beta)$
$=(2)^{3}-9(2)$
$=8-18$
$=-10$
11. (b) $[-3,-2] \cup[2,3]$

Explanation: $5|x|-x^{2}-6 \geq 0$
$x^{2}-5|x|+6 \leq 0$
$(|x|-2)(|x|-3) \leq 0$
So, $|x| \in[2,3]$
Therefore, $x \in[-3,-2] \cup[2,3]$
12. (a) many-one and into

Explanation: $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}: \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$
One-One function
Let p, q be two arbitrary elements in R
Then, $\mathrm{f}(\mathrm{p})=\mathrm{f}(\mathrm{q})$
$\Rightarrow \mathrm{p}^{2}=\mathrm{q}^{2}$
$\Rightarrow \mathrm{p}=\mathrm{q}$ and -q
Thus $f(x)$ is many one function.
Onto function
Let v be an arbitrary element of R (co-domain)
Then, $\mathrm{f}(\mathrm{x})=\mathrm{v}$
$\mathrm{x}^{2}=\mathrm{v}$
$\Rightarrow \mathrm{x}=\sqrt{v}$
Since $v \in R$
If $\mathrm{v}=2, \sqrt{v}=1.1414$, which is not possible as $\mathrm{x} \in \mathrm{R}$
Thus, $\mathrm{f}(\mathrm{x})$ is not onto function. It is into function.
13. (c) none of these

Explanation: Given set $\mathrm{A}=\{1,2,3,4,5\}$ and relation $\mathrm{R}=\left\{(\mathrm{a}, \mathrm{b}):\left|\mathrm{a}^{2}-\mathrm{b}^{2}\right|<16\right\}$
According to the condition $\left|a^{2}-b^{2}\right|<16$:
$\Rightarrow R=\{(1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(2,3),(2,2),(3,2),(4,2),(2,4),(3,3),(4,3),(5,4),(3,4),(4,4)$,
$(5,5)\}$.Which is the required solution.
14. (b) $[-1,2) \cup[3, \infty)$

Explanation: Here $\frac{(x+1)(x-3)}{(x-2)} \geq 0$
But $x \neq 2$
so, $x \in[-1,2) \cup[3, \infty)$
15. (a) $\{-1,1\}$

Explanation: We know that
$|x|=-x$ in $(-\infty, 0)$ and $|x|=x$ in $[0, \infty)$
So, $f(x)=\frac{x}{-x}=-1$ in $(-\infty, 0)$
And $f(x)=\frac{x}{x}=1$ in $(0, \infty)$
As clearly shown above $f(x)$ has only two values 1 and -1
So, range of $f(x)=\{-1,1\}$
16. (c) $A \times(B \cup C)$

Explanation: $\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cup \mathrm{A} \times \mathrm{C}$
$=\{a, b\} \times\{c, d\} \cup\{a, b\} \times\{d, c\}$
$=\{(a, c),(a, d),(b, c),(b, d)\} \cup\{(a, d),(a, c),(b, d),(b, c)\}$
$=\{(a, c),(a, d),(a, c),(b, c),(b, d),(b, e)\}$
17. (a) two points

Explanation: From A, $x^{2}+y^{2}=5$ and from B, $2 x=5 y$
Now, $2 \mathrm{x}=5 \mathrm{y} \Rightarrow \mathrm{x}=\frac{5}{2 y}$
$\therefore \mathrm{x}^{2}+\mathrm{y}^{2}=5 \Rightarrow\left(\frac{5}{2 y}\right)^{2}+\mathrm{y}^{2}=5$
$\Rightarrow 29 \mathrm{y}^{2}=20 \Rightarrow \mathrm{y}= \pm \sqrt{\frac{20}{29}}$
$\Rightarrow 29 \mathrm{y}^{2}=20 \Rightarrow \mathrm{y}= \pm \sqrt{\frac{20}{29}}$
$\therefore \mathrm{x}=\frac{5}{2}\left(\pm \sqrt{\frac{20}{29}}\right)$
\therefore Possible ordered pairs $=$ four
But two ordered pair in which c is positive and y is negative will be rejected as it will not be satisifed by the equation in B .
Therefore,
$A \cap B$ contains 2 elements.
18. (a) an equivalence relation

Explanation: Given Relation $\mathrm{R}=\{(1,1),(2,2),(3,3)\}$
Reflexive: If a relation has $\{(\mathrm{a}, \mathrm{b})\}$ as its element, then it should also have $\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{b})\}$ as its elements too.
Symmetric: If a relation has (a, b) as its element, then it should also have $\{(\mathrm{b}, \mathrm{a})\}$ as its element too.
Transitive: If a relation has $\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c})\}$ as its elements, then it should also have $\{(\mathrm{a}, \mathrm{c})\}$ as its element too.
Now, the given relation satisfies all these three properties.
Therefore, its an equivalence relation.
19. (d) Symmetric but neither reflexive nor transitive.

Explanation: The relation R is symmetric only, because if L_{1} is perpendicular to L_{2}, then L_{2} is also perpendicular to L_{1}, but no other cases that is reflexive and transitive is not possible.
20. (c) $(-\infty,-1) \cup(1,4]$

Explanation: We have, $\mathrm{f}(\mathrm{x})=\sqrt{4-x}+\frac{1}{\sqrt{x^{2}-1}}$
$\mathrm{f}(\mathrm{x})$ is defined if $4-x \geq 0$ and $\mathrm{x}^{2}-1>0$
$\Rightarrow \quad x-4 \leq 0$ and $(\mathrm{x}+1)(\mathrm{x}-1)>0$
$\Rightarrow \quad x \leq 4$ and $(\mathrm{x}<-1$ or $\mathrm{x}>1)$
\therefore Domain of $\mathrm{f}=(-\infty,-1) \cup(1,4]$
21. Here we have, $\mathrm{f}(\mathrm{x})=\sqrt{x-1}$ and $\mathrm{g}(\mathrm{x})=\sqrt{x+1}$

Now, $\{\mathrm{x}: \mathrm{g}(\mathrm{x})=0\}=\{\mathrm{x}: \sqrt{x+1}=0\}=\{\mathrm{x}: \mathrm{x}+1=0\}=\{-1\}$
$\therefore \operatorname{dom}(\mathrm{f}) \cap \operatorname{dom}(\mathrm{g})=\{\mathrm{x}: \mathrm{g}(\mathrm{x})=0\}=[1, \infty) \cap[-1, \infty)-\{-1\}=[1, \infty)$
$\therefore \frac{f}{g} \rightarrow[1, \infty) \rightarrow \mathrm{R}$ is given by:
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{\sqrt{x-1}}{\sqrt{x+1}}$
22. $f_{3}=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$

Every element of set X has an ordered pair in the relation f_{3}.
However, two ordered pairs $(2,9)$ and $(2,11)$ have the same first component but different second components.
Hence, the given relation f_{3} is not a function.
23. We observe that $\mathrm{f}(\mathrm{x})=0$ for any $x \in R-\{-4\}$ Therefore, $\frac{1}{f}: R-\{-4\} \rightarrow R$ is given by $\left(\frac{1}{f}\right)(x)=\frac{1}{f(x)}=\frac{1}{1 /(x+4)}=(\mathrm{x}+4)$
24. $R=\left\{\left(x, x^{3}\right): x\right.$ is a prime number less than 10$\}$

Putting $x=2,3,5,7$
$R=\{(2,8),(3,27),(5,125),(7,343)\}$
25. R_{4} is not a relation from A to B, because (q, a) and (s, b) are elements of R_{4} but (q, a) and (s, b) are not in $\mathrm{A} \times \mathrm{B}$. As such $\mathrm{R}_{4} \varsubsetneqq$ $\mathrm{A} \times \mathrm{B}$.
26. Here we have, $\mathrm{R}=\{(\mathrm{x}, \mathrm{y}) \mathrm{y}=2 \mathrm{x}+7$, where $\mathrm{x} \in \mathrm{R}$ and $-5 \leq x \leq 5)\}$

Domain of $\mathrm{R}_{1}=\{-5 \leq x \leq 5, x \in R\}=[-5,5]$
$x \in[-5,5]$
$\Rightarrow 2 x \in[-10,10]$
$\Rightarrow 2 x+7 \in[-3,17]$
Range is [-3, 17].
27. When $0 \leq x \leq 1, \mathrm{f}(\mathrm{x})=\mathrm{x}$

Therefore, we have,
$\mathrm{f}\left(\frac{1}{2}\right)=\frac{1}{2}$
28. To find: $\left(\frac{f}{g}\right)(x)$
$\left(\frac{f}{g}\right)(x)=\left(\frac{f(x)}{g(x)}\right)$
$=\left(\frac{x^{3}+1}{x+1}\right)$
$=\left(\frac{x^{3}+1^{3}}{x+1}\right)$
$=\left(\frac{(x+1)\left(x^{2}-x+1\right)}{x+1}\right)\left(\right.$ Because $\mathrm{a}^{3}+\mathrm{b}^{3}=(\mathrm{a}+\mathrm{b})\left(\mathrm{a}^{2}-\mathrm{ab}+\mathrm{b}^{2}\right)$
$=x^{2}-x+1$
29. Here we need to express $\left\{(x, y): x^{2}+y^{2}=25\right.$, where $\left.x, y \in W\right\}$ as a set of ordered pairs.

It is easy to verify that each of the following ordered pairs of whole numbers satisfies the given relation $x^{2}+y^{2}=25$: $(5,0),(0,5),(3,4)$ and $(4,3)$.
Hence, the set of required ordered pairs is
$\{(5,0),(0,5),(3,4),(4,3)\}$.
30. Clearly, 2R2, 2R4, 2R6, 2R8, 4R4, and 4R8.
$\therefore R=\{(2,2),(2,4),(2,6),(2,8),(4,4),(4,8)\}$.
31. Here we have $A=[1,3,5]$ and $B=[2,3]$

We have
$B \times A=[2,3] \times\{1,3,5\}$
$=\{(2,1),(2,3),(2,5),(3,1),(3,3),(3,5)\}$.
32. Given: $\mathrm{f}(\mathrm{x})=\frac{x}{c}$

To find:(cf) (x)
(cf) $(\mathrm{x})=\mathrm{c} \cdot \mathrm{f}(\mathrm{x})$
$=\mathrm{c} \cdot\left(\frac{x}{c}\right)$
$=\mathrm{x}$
33. We have given that, relation R is defined on Z of integers

And $\mathrm{R}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x}, \mathrm{y} \in \mathrm{Z}, \mathrm{x}^{2}+\mathrm{y}^{2} \leq 4\right\}$
$=\{(-2,0),(-1,0),(0,0),(1,0),(2,0),(0,-2),(0,-1),(0,1),(0,2),(1,1),(-1,-1),(1,-1),(-1,1)\}$
Now we know,Domain is the set which consist all first elements of ordered pairs in relation R.
So, $\operatorname{Domain}(R)=\{-2,-1,0,1,2\}$
34. Given, $A=\{1,2\}, B=\{2,3,4\}$ and $C=\{4,5\}$
$B \cap C=\{2,3,4\} \cap\{4,5\}=\{4\}$
$\therefore A \times(B \cap C)=\{1,2\} \times\{4\}$
$=\{(1,4),(2,4)\}$
35. Read the text carefully and answer the questions:

A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67\%, the highest ever.

Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ' R ' is defined on I as follows:
$R=\left\{\left(v_{1}, v_{2}\right): v_{1}, v_{2} \in I\right.$ and both use their voting right in general election -2019$\}$
(i) \quad (d) $(\mathrm{X}, \mathrm{Y}) \notin \mathrm{R}$

Explanation: $(\mathrm{X}, \mathrm{Y}) \notin \mathrm{R}$
36. According to the question, we can state,

Let (x, y) be an arbitrary element of $(A \cap B) \times C$.
$\Rightarrow(\mathrm{x}, \mathrm{y}) \in(\mathrm{A} \cap \mathrm{B}) \times \mathrm{C}$
Since, (x, y) are elements of Cartesian product of $(A \cap B) \times C$
$\Rightarrow \mathrm{x} \in(\mathrm{A} \cap \mathrm{B})$ and $\mathrm{y} \in \mathrm{C}$
$\Rightarrow(x \in A$ and $x \in B)$ and $y \in C$
$\Rightarrow(x \in A$ and $y \in C)$ and $(x \in B$ and $y \in C)$
$\Rightarrow(x, y) \in A \times C$ and $(x, y) \in B \times C$
$\Rightarrow(\mathrm{x}, \mathrm{y}) \in(\mathrm{A} \times \mathrm{C}) \cap(\mathrm{B} \times \mathrm{C}) \ldots 1$
Let (x, y) be an arbitrary element of $(A \times C) \cap(B \times C)$.
$\Rightarrow(\mathrm{x}, \mathrm{y}) \in(\mathrm{A} \times \mathrm{C}) \cap(\mathrm{B} \times \mathrm{C})$
$\Rightarrow(\mathrm{x}, \mathrm{y}) \in(\mathrm{A} \times \mathrm{C})$ and $(\mathrm{x}, \mathrm{y}) \in(\mathrm{B} \times \mathrm{C})$
$\Rightarrow(x \in A$ and $y \in C)$ and $(x \in B$ and $y \in C)$
$\Rightarrow(\mathrm{x} \in \mathrm{A}$ and $\mathrm{x} \in \mathrm{B})$ and $\mathrm{y} \in \mathrm{C}$
$\Rightarrow \mathrm{x} \in(\mathrm{A} \cap \mathrm{B})$ and $\mathrm{y} \in \mathrm{C}$
$\Rightarrow(\mathrm{x}, \mathrm{y}) \in(\mathrm{A} \cap \mathrm{B}) \times \mathrm{C} \ldots 2$
From 1 and 2, we get: $(A \cap B) \times C=(A \times C) \cap(B \times C)$
37. Here it is given that $\mathrm{A}=\{2,3,5\}$ and $\mathrm{R}=\{(2,3),(2,5),(3,3),(3,5)\}$ and we need to show that R is a binary relation on A .

Now, $A \times A=\{(2,2),(2,3),(2,5),(3,2),(3,3),(3,5),(5,2),(5,3),(5,5)\}$
Since, R is a subset of $A \times A$. it's a binary relation on A .
Therefore, the domain of R is the set of first coordinates of R
Dom (R) $=\{2,3\}$
The range of R is the set of second coordinates of R
Range $(\mathrm{R})=\{3,5\}$
38. Here we have, $\left(\frac{a}{3}+1, b-\frac{1}{3}\right)=\left(\frac{5}{3}, \frac{2}{3}\right)$
\because Given ordered pair are equal, So, corresponding elements are also equal.
$\therefore \frac{a}{3}+1=\frac{5}{3}$ \qquad (i)

After solving Eq. (i), we get
$\frac{a}{3}+1=\frac{5}{3} \Rightarrow a=3\left(\frac{5}{3}-1\right) \Rightarrow a=5-3 \Rightarrow a=2$
Now, $b-\frac{1}{3}=\frac{2}{3}$
After solving Eq. (ii), we get
b- $\frac{1}{3}=\frac{2}{3}$
$b=\frac{2}{3}+\frac{1}{3} \Rightarrow b=1$
Therefore, the value of $\mathrm{a}=2$ and $\mathrm{b}=1$.
39. Here we have $A=\{-2,-1,0,1,2\}, B=\{0,1,4,9\}$ and $R=\{(-2,4),(-1,1),(0,0),(1,1),(2,4)\}$
i. Since $R \subset A \times B$, so R is a relation from A to B Note that $-2 \mathrm{R} 4,-1 \mathrm{R} 1,0 \mathrm{R} 0,1 \mathrm{R} 1$ and 2R4.
ii. $\operatorname{Dom}(R)=$ set of first coordinates of elements of R
$=\{-2,-1,0,1,2\}$.
Range $(R)=$ set of second coordinates of elements of R
$=\{0,1,4\}$.
Co-domain of $\mathrm{R}=\{0,1,4,9\}=\mathrm{B}$.
40. Here we have, $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{x^{2}-1}}$
we need to find where the function is defined
The condition for the function to be defined
$x^{2}-1>0$
$\Rightarrow x^{2}>1$
$\Rightarrow \mathrm{x}>1$
So, the domain of the function is the set of all the real numbers greater than 1
The domain of the function, $\mathrm{D}_{\{\mathrm{f}(\mathrm{x})\}}=(1, \infty)$
Now put any value of x within the domain set we get the value of the function always a fraction whose denominator is not equalled to 0
The range of the function, $\mathrm{R}_{\mathrm{f}(\mathrm{x})}=(0,1)$.
41. Given a and b are integers, i.e. $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$.
\therefore Domain of $\mathrm{R}=$ Set of all first elements in the relation.
$=$ Values of ' a ' which are in the relation.
Since, $\mathrm{a}^{2}+\mathrm{b}^{2}=25$ and a, b are integers;
$\Rightarrow R=\{(5,0),(0,5),(-5,0),(0,-5),(3,4),(4,3),(-3,-4),(-4,-3),(-3,4),(4,-3),(-4,3),(3,-4)\}$
\Rightarrow Domain of $\mathrm{R}=\{-5,-4,-3,0,3,4,5\}$
42.

The graph of the function $f(x)=-2$ is the line $y=-2$. f is a constant function drawn parallel to the x-axis at a distance of 2 units below the x -axis.
43. Given: $\mathrm{f}(\mathrm{x})=\sqrt{x+1}$ and $g(x)=\sqrt{9-x^{2}}$

We know $\left(\frac{1}{g}\right)(x)=\frac{1}{g(x)}$ and $(\operatorname{cg})(\mathrm{x})=\operatorname{cg}(\mathrm{x})$
$\therefore\left(\frac{5}{g}\right)(x)=\frac{5}{\sqrt{9-x^{2}}}$
Domain of $f \frac{5}{g}=$ Domain of $\mathrm{g}=[-3,3]$
However, $\frac{5}{g}=(x)$ is defined for all real values of $\mathrm{x} \in[-3,3]$, except for the case when $9-\mathrm{x}^{2}=0$ or $\mathrm{x}= \pm 3$
When $\mathrm{x}= \pm 3, \frac{5}{g}=(x)$ will be undefined as the division result will be indeterminate.
Domain of $\frac{5}{g}==[-3,3]-\{-3,3\}$
\therefore Domain of $\frac{5}{g}==(-3,3)$
Thus, $\frac{5}{g}=(-3,3)$
R is given by $\left(\frac{5}{g}\right)(x)=\frac{5}{\sqrt{9-x^{2}}}$
44. Here we have, $\mathrm{f}(\mathrm{x})=\sqrt{\frac{x-5}{3-x}}$

We need to find where the function is defined.
The condition for the function to be defined,
$3-\mathrm{x}>0$ or $\mathrm{x}<3$
So, the domain of the function is the set of all the real numbers lesser than 3
The domain of the function, $\mathrm{D}_{\{\mathrm{f}(\mathrm{x})\}}=(\infty, 3)$
The condition for the range of the function to be defined,
$x-5 \geq 0 \& 3-x>0$
$x \geq 5 \& x<3$
Both the conditions can't be satisfied simultaneously, it means there is no range for the function $f(x)$.
45. $\mathrm{F}(\mathrm{x})=[\mathrm{x}]$

As the definition of the function suggests,
for all x such that $-3<x \leq-2$, we have $\mathrm{f}(\mathrm{x})=-2$;
for all x such that $-2<x \leq-1$, we have $f(x)=-1$;
for all x such that $-1<x \leq 0$, we have $f(x)=0$;
for all x such that $0<x \leq 1$, we have $/(x)=1$; and so on.
i.e., $\mathrm{f}(\mathrm{x})=[\mathrm{x}]=\left\{\begin{array}{c}-2 \text { when } x \in(-3,-2] \\ -1 \text { when } x \in(-2,-1] \\ 0 \text { when } x \in(-1,0] \\ 1 \text { when } x \in(0,1] \\ 2 \text { when } x \in(1,2] \\ 3 \text { when } x \in(2,3] \\ \text { and so on. }\end{array}\right.$

Plotting these points, we can get the required graph. The function jumps at the points $(-2,-1),(-1,0),(0,1),(1,2)$, etc., or is discontinuous at each integral value of x . Required graph of function shown in figure.
46. Given that $R=\{x, y\}: x, y \in Z$ and $\left.x^{2}+y^{2}=25\right\}$ and we need to express R and R^{-1} as sets of ordered pairs.

Now, $x^{2}+y^{2}=25$
Put $\mathrm{x}=0, \mathrm{y}=5,0^{2}+5^{2}=25$
Put $x=3, y=4,3^{2}+4^{2}=25$
$\mathrm{R}=\{(0,5),(0,-5),(5,0),(3,4),(-3,4),(-3,-4),(3,-4)\}$
Since, x and y get interchanged in the ordered pairs, R and R^{-1} are same.
47. We are given the function,
$f(x)=4 x-x^{2}$
$f(a+1)-f(a-1)=\left[4(a+1)-(a+1)^{2}\right]-\left[4(a-1)-(a-1)^{2}\right]$
$=4[(a+1)-(a-1)]-\left[(a+1)^{2}-(a+1)^{2}\right]$
$=4(2)-[(a+1+a-1)(a+1-a+1)]$
Using: $a^{2}-b^{2}=(a+b)(a-b)$
$f(a+1)-(a-1)=4(2)-2 a(2)$
$=4(2-a)$
48. Given, $|x-2|=\left\{\begin{array}{ll}x-2, & x \geq 2 \\ -(x-2), & x<2\end{array}\right.$ and $|x+2|= \begin{cases}(x+2) & x \geq-2 \\ -(x+2), & x<-2\end{cases}$
$\Rightarrow \quad f(x)=\left\{\begin{array}{lr}(x-2)+(2+x), & 2 \leq x \leq 3 \\ -(x-2)+(x+2), & -2 \leq x<2 \\ -(x-2)-(x+2), & -3 \leq x<-2\end{array}\right.$
$=\left\{\begin{array}{cc}x-2+2+x, & 2 \leq x \leq 3 \\ -x+2+x+2, & -2 \leq x<2 \\ -x+2-x-2, & -3 \leq x<-2\end{array}\right.$
$=\left\{\begin{array}{c}2 x, \quad 2 \leq x \leq 3 \\ 4,-2 \leq x<2 \\ -2 x,-3 \leq x<-2\end{array}\right.$
49. $\mathrm{f}(\mathrm{x})=[\mathrm{x}]$.

As the definition of the function indicates,
for all x such that $-2 \leq x<-1$, we have $f(x)=-2$;
for all x such that $-1 \leq x<0$, we have $f(x)=-1$;
for all x such that $0 \leq x<1$, we have/ $(x)=0$;
for all x such that $1 \leq x<2$, we have $f(x)=1$,
and so on, $\mathrm{f}(\mathrm{x})=[\mathrm{x}]=\left\{\begin{array}{c}-2 \text { when } x \in[-2,-1) \\ -1 \text { when } x \in[-1,0) \\ 0 \text { when } x \in[0,1) \\ 1 \text { when } x \in[1,2) \\ \text { and so on. }\end{array}\right.$
Clearly, the function jumps at the points $(-1,-2),(0,-1),(1,0),(2,1)$, etc.
In other words, the given function is discontinuous at each integral value of x .
50. Here $\mathrm{f}(\mathrm{x})=\frac{1}{x+2}$
$f(x)$ assume real values for all real values of x except for $x+2=0$ i.e. $x=-2$.
Thus domain of $\mathrm{f}(\mathrm{x})=\mathrm{R}-\{-2\}$.
51. (i) Let $(x, y) \in R$. Now, $(x, y) \in R \Rightarrow x-y$ is divisible by n
$\Rightarrow x-y=k n$ for some $\mathrm{k} \in Z$
$\Rightarrow y-x=(-k) n$
$\Rightarrow y-x$ is divisible by n
$\Rightarrow(y, x) \in R$.
(ii) Let $(x, y) \in R,(y, z) \in R$

Now $(x, y) \in R \Rightarrow x-y$ is divisible by $\mathrm{n} \Rightarrow x-y=k n$ for some $k \in z \ldots$. (1)
Now, $(y, z) \in R \Rightarrow y-z$ is divisible by $\mathrm{n} \Rightarrow y-z=m n$ for some $m \in z \ldots \ldots$ (2)
\Rightarrow Adding (1) \& (2), we get,
$\Rightarrow(\mathrm{x}-\mathrm{z})=\mathrm{n}(\mathrm{k}+\mathrm{m})$
$\Rightarrow \mathrm{x}-\mathrm{z}$ is divisible by n
$\Rightarrow(x, z) \in R$
52. Here $f(x)=\frac{x^{2}}{1+x^{2}}$

Put $y=\frac{x^{2}}{1+x^{2}} \Rightarrow y+y x^{2}=x^{2} \Rightarrow x^{2}(1-y)=y$
$\Rightarrow x^{2}=\frac{y}{1-y} \Rightarrow x= \pm \sqrt{\frac{y}{1-y}}$
$\frac{y}{1-y} \geqslant 0$
$\Rightarrow \frac{y}{y-1} \leqslant 0$
$\Rightarrow 0 \leqslant y<1$
$\Rightarrow y \in[0,1)$
\therefore Range of $\mathrm{f}(\mathrm{x})=[0,1)$
53. Suppose $(x, y) \in A \times A$
$\Rightarrow \quad x, y \in A$
$\Rightarrow \quad x, y \in B$ [Given: $A \subseteq B$]
Now, $x \in A, y \in B \Rightarrow(x, y) \in A \times B$
and $x \in B, y \in A$
$\Rightarrow \quad(x, y) \in B \times A$
$\Rightarrow \quad(x, y) \in(A \times B) \cap(B \times A)$
$\therefore \quad A \times A \subseteq(A \times B) \cap(B \times A) \ldots . .$. (i)
Suppose $(x, y) \in(A \times B) \cap(B \times A)$
$\Rightarrow(x, y) \in A \times B$ and $(x, y) \in B \times A$
$\Rightarrow(x \in A$ and $y \in B)$ and $(x \in B$ and $y \in A)$
$\Rightarrow \quad x, y \in A \Rightarrow(x, y) \in A \times A$
$\therefore \quad(A \times B) \cap(B \times A) \subseteq(A \times A)$
From Eqs. (i) and (ii), we get
$A \times A=(A \times B) \cap(B \times A)$
Hence proved.
54. Here we have, $\mathrm{f}(\mathrm{x})=\frac{x^{2}+1}{x^{2}-1}$

Clearly, $f(x)$ is defined for all real values of x except that at which $x^{2}-1=0$, i.e., $x= \pm 1$
$\therefore \operatorname{dom}(\mathrm{f})=\mathrm{R}-\{-1,1\}$
Let $y=f(x)$. Then, we have
$y=\frac{x^{2}+1}{x^{2}-1} \Rightarrow x^{2} y-y=x^{2}+1 \Rightarrow x^{2}(y-1)=(y+1)$
$\Rightarrow x^{2}=\frac{y+1}{y-1} \Rightarrow x= \pm \sqrt{\frac{y+1}{y-1}}$
It is clear from equation (i) that x is not defined when $\mathrm{y}-1=0$ or when $\frac{y+1}{y-1}<0$
Now, $\mathrm{y}-1=0 \Rightarrow \mathrm{y}=1$
And $\frac{y+1}{y-1}<0 \Rightarrow(\mathrm{y}+1>0$ and $\mathrm{y}-1<0)$ or $(\mathrm{y}+1<0$ and $\mathrm{y}-1>0)$
$\Rightarrow(y>-1$ and $y<1)$ or $(y<-1$ and $y>1)$
$\Rightarrow-1<y<1$
$[\because y<-1$ and $y>1$ is not possible]
Thus, x is not defined when $-1<\mathrm{y} \leq 1$. [using (ii) and (iii)]
\therefore range (f) $=\mathrm{R}-(-1,1]$
Hence, $\operatorname{dom}(\mathrm{f})=\mathrm{R}-\{-1,1\}$ and range $(\mathrm{f})=\mathrm{R}-(-1,1]$.
55. Given, $f(x)=\frac{3}{2-x^{2}}$

We know that, $\mathrm{f}(\mathrm{x})$ is not defined when $\left(2-x^{2}\right)=0$
i.e., $x= \pm \sqrt{2}$
\therefore Domain of $f=R-\{-\sqrt{2}, \sqrt{2}\}$
Also let, $y=\frac{3}{2-x^{2}} \Rightarrow 2-x^{2}=\frac{3}{y}$
$\Rightarrow \quad x^{2}=2-\frac{3}{y} \quad \Rightarrow x= \pm \sqrt{2-\frac{3}{y}}= \pm \sqrt{\frac{2 y-3}{y}}$
x is defined, if $\frac{2 y-3}{y} \geq 0$ and $y \neq 0$, i.e.
$(2 y-3) \geq 0, y<0$ and $y \neq 0$
$\Rightarrow-\infty<y<0$ and $\frac{3}{2} \leq y<\infty$
\therefore Range of $f=(-\infty, 0) \cup\left[\frac{3}{2}, \infty\right)$

56. Here $\mathrm{R}=\{(\mathrm{x}, \mathrm{x}+5): x \in(0,1,2,3,4,5)\}$
$=\{(a, b): a=0,1,2,3,4,5\}$
Now $a=x$ and $b=x+5$
Putting $a=0,1,2,3,4,5$ we get $b=5,6,7,8,9,10$
\therefore Domain of $\mathrm{R}=\{0,1,2,3,4,5\}$
Range of $R=\{5,6,7,8,9,10\}$
57. We have, $f: R \rightarrow R: f(x)=x^{3}$ for all $x \in R$
$\operatorname{dom}(\mathrm{f})=\mathrm{R}$ and range $(\mathrm{f})=\mathrm{R}$.
We have,

x	-2	-1.5	-1	0	1	1.5	2
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}$	-8	-3.375	-1	0	1	3.375	8

On a graph paper, we draw X^{\prime} OX and YOY' as the x -axis and the y -axis respectively.
We take the scale as 5 small divisions $=1$ unit.
Now, we plot the points $\mathrm{A}(-2,-8), \mathrm{B}(-1.5,-3.375), \mathrm{C}(-1,-1), 0(0,0), \mathrm{D}(1,1), \mathrm{E}(1.5,3.375)$ and $\mathrm{F}(2,8)$.

We join these points freehand successively to obtain the required curve shown in the figure below.

58. Here $f(x)=2 x-5$
i. Putting $x=0$
$\therefore \mathrm{f}(0)=2 \times 0-5=-5$
ii. Putting $x=7$
$\therefore f(7)=2 \times 7-5=9$
iii. Putting $x=-3$

$$
\therefore f(-3)=2 \times-3-5=-11
$$

59. We have,
$f(x)=x^{2}-2 x-3$
Now,
$f(-2)=(-2)^{2}-2(-2)-3$
$=4+4-3$
$=5$
$\mathrm{f}(-1)=(-1)^{2}-2(-1)-3$
$=1+2-3$
$=0$
$\mathrm{f}(0)=(0)^{2}-2 \times 0-3$
$=-3$
$f(1)=(1)^{2}-2 \times 1-3$
$=1-2-3$
$=-4$
$f(2)=(2)^{2}-2 \times 2-3$
$=4-4-3$
$=-3$
Range $(\mathrm{f})=\{-4,-3,0,5\}$
60. Here $(x, 1) \in A \times B \Rightarrow x \in A$ and $1 \in B$
$(y, 2) \in A \times B \Rightarrow y \in A$ and $2 \in B$
$(\mathrm{z}, 1) \in \mathrm{A} \times \mathrm{B} \Rightarrow \mathrm{z} \in \mathrm{A}$ and 1
It is given that $n(A)=3$ and $n(B)=2$
$\therefore A=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$
and $B=\{1,2\}$
61. i. To show: F is a relation from X to Y

First elements in $\mathrm{F}=1,2,3,4$
All the first elements are in Set X
So, the first element is from set x
Second elements in $F=5,9,1,11$
All the second elements are in Set Y
So, the second element is from set Y
since the first element is from set X and the second element is from set Y
Hence, F is a relation from X to Y
ii. To show: F is a function from X to Y

Function:
i. all elements of the first set are associated with the elements of the second set.
ii. An element of the first set has a unique image in the second set. $F=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$

Here, 2 is coming twice.
Hence, it does not have a unique (one) image.
So, it is not a function.
62. Given, $\mathrm{f}(\mathrm{x})= \begin{cases}1+2 x & x<0 \\ 3+5 x, & x \geq 0\end{cases}$

Here, $\mathrm{f}(\mathrm{x})=1+2 \mathrm{x}, \mathrm{x}<0$, this gives
$f(-4)=1+2(-4)=-7$
$f(-3)=1+2(-3)=-5$
$f(-2)=1+2(-2)=-3$
$f(-1)=1+2(-1)=-1$
$f(x)=3+5 x, x \geq 0$
$f(0)=3+5(0)=3$
$f(1)=3+5(1)=8$
$f(2)=3+5(2)=13$
$f(3)=3+5(3)=18$
$f(4)=3+5(4)=23$
Now the graph of f is as shown in following figure

Range: Let $y_{1}=f(x), x<0$
$\therefore \mathrm{y}_{1}=1+2 \mathrm{x}, \mathrm{x}<0$
$\therefore x=\frac{y_{1}-1}{2}, x<0$
$\because x<0 \Rightarrow y_{1}-1<0 \Rightarrow y_{1}<1$
Let $\mathrm{y}_{2}=\mathrm{f}(\mathrm{x}), \mathrm{x} \geq 0$
$\Rightarrow y_{2}=3+5 \mathrm{x}, \mathrm{x} \geq 0$
$\Rightarrow x=\frac{y_{2}-3}{5}, x \geq 0$
$\because x \geq 0 \Rightarrow y_{2}-3 \geq 0 \Rightarrow y_{2} \geq 3$
Therefore, range of $f(-\infty, 1), \cup[3, \infty)$
63. Here we need to find the sum and the difference of the identity function and the modulus function.

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}: \mathrm{f}(\mathrm{x})=\mathrm{x}$ be the identity function.
And, let $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}: \mathrm{g}(\mathrm{x})=|\mathrm{x}|$ be the modulus function.
Then, $\operatorname{dom}(\mathrm{f})=\mathrm{R}$ and $\operatorname{dom}(\mathrm{g})=\mathrm{R}$.
$\therefore \operatorname{dom}(\mathrm{f}) \cap \operatorname{dom}(\mathrm{g})=\mathrm{R} \cap \mathrm{R}=\mathrm{R}$.
i. $\operatorname{dom}(f+g)=\operatorname{dom}(f) \cap \operatorname{dom}(g)=R$.

Now, ($\mathrm{f}+\mathrm{g}$): $\mathrm{R} \rightarrow \mathrm{R}$ is given by
$(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$
$=\mathrm{x}+|\mathrm{x}|=\mathrm{x}+\left\{\begin{array}{l}x, \text { when } x \geq 0 \\ -x, \text { when } x<0\end{array}\right.$
$=\left\{\begin{array}{l}x+x, \text { when } x \geq 0 \\ x-x, \text { when } x<0\end{array}=\left\{\begin{array}{l}2 x, \text { when } x \geq 0 \\ 0, \text { when } x<0\end{array}\right.\right.$
Hence, $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\left\{\begin{array}{l}2 x, \text { when } x \geq 0 \\ 0, \text { when } x<0\end{array}\right.$
ii. $\operatorname{dom}(\mathrm{f}-\mathrm{g})=\operatorname{dom}(\mathrm{f}) \cap \operatorname{dom}(\mathrm{g})=\mathrm{R}$.
$\therefore(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$
$=\mathrm{x}-|\mathrm{x}|=\mathrm{x}-\left\{\begin{array}{l}x, \text { when } x \geq 0 \\ -x, \text { when } x<0\end{array}\right.$
$=\left\{\begin{array}{l}x-x, \text { when } x \geq 0 \\ x+x, \text { when } x<0\end{array}=\left\{\begin{array}{l}0, \text { when } x \geq 0 \\ 2 x, \text { when } x<0\end{array}\right.\right.$
$\therefore(\mathrm{f}-\mathrm{g})(\mathrm{x})=\left\{\begin{array}{l}0, \text { when } x \geq 0 \\ 2 x, \text { when } x<0\end{array}\right.$
64. Here we are given that, $\mathrm{f}(\mathrm{x})=\sqrt{x-\lfloor x}$

Where $[\mathrm{x}]$ is the Greatest integer Function of x .
$\mathrm{f}(\mathrm{x})=\sqrt{\{x\}}$
Where $\{x\}$ is fractional part of x

The graph of $f(x)$ is:

i. Domain:

Domain of $\{x\}$ is R.
The value of the fractional part of x is always either positive or zero.
Hence domain of x is R
ii. Range:

Range of $\{x\}$ is $[0,1)$
As the root value $[0,1)$ between interval lies between $[0,1)$
Hence range of $f(x)$ is $[0,1)$.
65. Here we are given that A, B and C three sets.

To prove: $A \times(B \cap C)=(A \times B) \cap(A \times C)$
Let us consider, $(x, y) \in A \times(B \cap C)$
$\Rightarrow x \in A$ and $y \in(B \cap C)$
$\Rightarrow(x \in A$ and $y \in B) \quad(x \in A$ and $y \in C)$
$\Rightarrow(x, y) \in(A \times B)$ and $(x, y) \in(A \times C)$
$\Rightarrow(x, y) \in(A \times B) \cap(A \times C)$
From above, we can say that,
$\Rightarrow A \times(B \cap C) \subseteq(A \times B) \cap(A \times C)$ \qquad
Let us consider again, $(a, b) \in(A \times B) \cap(A \times C)$
$\Rightarrow(a, b) \in(A \times B)$ and $(a, b) \in(A \times C)$
$\Rightarrow(a \in A$ and $b \in B)$ and $(a \in A$ and $b \in C)$
$\Rightarrow a \in A$ and $(b \in B$ and $b \in C)$
$\Rightarrow a \in A$ and $b \in(B \cap \mathrm{C})$
$\Rightarrow(a, b) \in A \times(B \cap C)$
From above, we can say that,
$\Rightarrow(A \times B) \cap(A \times C) \subseteq A \times(B \cap C)$ \qquad (ii)

From (i) and (ii).
$A \times(B \cap C)=(A \times B) \cap(A \times C)$
Hence proved.
66. i. Given: $A=\{2,3,5\}$ and $B=\{5,7\}$

To find $A \times B$
As we know that According to the definition of the Cartesian product,
Given two non-empty sets X and Y . The Cartesian product $\mathrm{X} \times \mathrm{Y}$ is the set of all ordered pairs of elements from X and Y, i.e,
$X \times Y=\{(X, Y): x \in X, y \in Y\}$
Here, $A=\{2,3,5\}$ and $B=\{5,7\}$. So, $A \times B=\{2,3,5\} \times\{5,7\}$
$A \times B=\{(2,5),(3,5),(5,5),(2,7),(3,7),(5,7)\}$
ii. Given: $A=\{2,3,5\}$ and $B=\{5,7\}$

To find: $\mathrm{B} \times \mathrm{A}$
As we know that According to the definition of the Cartesian product,
Given two non-empty sets X and Y . The Cartesian product $\mathrm{X} \times \mathrm{Y}$ is the set of all ordered pairs of elements from X and Y, i.e.,
$X \times Y=\{(X, Y): x \in X, y \in Y\}$
Here, $A=\{2,3,5\}$ and $B=\{5,7\}$. So, $B \times A=(5,7) \times(2,3,5)$
$B \times A=\{(5,2),(5,3),(5,5),(7,2),(7,3),(7,5)\}$
iii. Given: $\mathrm{A}=\{2,3,5\}$ and $\mathrm{B}=\{2,3,5\}$

To find: $A \times A$
As we know that According to the definition of the Cartesian product,
Given two non-empty sets X and Y . The Cartesian product $\mathrm{X} \times \mathrm{Y}$ is the set of all ordered pairs of elements from X and Y, i.e,
$X \times Y=\{(X, Y): x \in X, y \in Y\}$
Here, $A=\{2,3,5\}$ and $A=\{2,3,5\}$. So, $A \times A=(2,3,5) \times(2,3,5)$
$A \times A=\{(2,2),(2,3),(2,5),(3,2),(3,3),(3,5),(5,2),(5,3),(5,5)\}$
iv. Given: $B=\{5,7\}$

To find: $B \times B$
As we know that According to the definition of the Cartesian product,
Given two non-empty sets X and Y . The Cartesian product $\mathrm{X} \times \mathrm{Y}$ is the set of all ordered pairs of elements from X and Y, i.e.,
$\mathrm{X} \times \mathrm{Y}=\{(\mathrm{X}, \mathrm{Y}): \mathrm{x} \in \mathrm{X}, \mathrm{y} \in \mathrm{Y}\}$
Here, $B=\{(5,7)$ and $B=\{5,7\}$. So, $B \times B=(5,7) \times(5,7)\}$
$B \times B=\{(5,5),(5,7),(7,5),(7,7)\}$
67. Given that,
$\mathrm{R}=\{(1,39),(2,37),(3,35) \ldots(19,3),(20,1)\}$
Domain $=\{1,2,3, \ldots \ldots . . .20\}$
Range $=\{1,3,5,7 \ldots, 39\}$
R is not reflexive as $(2,2) \notin R$ as
$2 \times 2+2 \neq 41$
R is not symmetric
as $(1,39) \in R$ but $(39,1) \notin R$
R is not transitive
as $(11,19) \in R,(19,3) \in R$
But $(11,3) \notin \mathrm{R}$
Hence, R is neither reflexive, nor symmetric and nor transitive.
68. i. To determine $\mathbf{A} \times(\mathbf{B} \cup \mathbf{C})$
$B \cup C=\{b, c, e\} \cup\{b, c, f\}=\{b, c, e, f\}$
$\therefore A \times(B \cup C)=\{a, d\} \times\{b, c, e, f\}$
$=\{(a, b),(a, c),(a, e),(a, f),(d, b),(d, c),(d, e),(d, f)\} \ldots(i)$
To determine $(\mathbf{A} \times \mathbf{B}) \cup(\mathbf{A} \times \mathbf{C})$
$A \times B=\{a, d\} \times\{b, c, e\}$
$=\{(a, b),(a, c),(a, e),(d, b),(d, c),(d, e)\}$
$A \times C=\{a, d\} \times\{b, c, f\}$
$=\{(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{f}),(\mathrm{d}, \mathrm{b}),(\mathrm{d}, \mathrm{c}),(\mathrm{d}, \mathrm{f})\}$
$\therefore(A \times B) \cup(A \times C)$
$=\{(a, b),(a, c),(a, e),(a, f),(d, b),(d, c),(d, e),(d, f)\} \ldots(i i)$
From Eqs. (i) and (ii), we get
$A \times(B \cup C)=(A \times B) \cup(A \times C)$

Hence verified.

ii. To determine $\mathbf{A} \times(\mathbf{B} \cap \mathbf{C})$
$(B \cap C)=\{b, c, e\} \cap\{b, c, f\}=\{b, c\}$
$\therefore A \times(B \cap C)=\{a, d\} \times\{b, c\}$
$=\{(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}),(\mathrm{d}, \mathrm{b}),(\mathrm{d}, \mathrm{c})\} \ldots(\mathrm{iii})$
To determine $(\mathbf{A} \times \mathbf{B}) \cap(\mathbf{A} \times \mathbf{C})$
$A \times B=\{(a, b),(a, c),(a, e),(d, b),(d, c),(d, e)\}$
$A \times C=\{(a, b),(a, c),(a, f),(d, b),(d, c),(d, f)\}$
$\therefore(A \times B) \cap(A \times C)=\{(a, b),(a, c),(d, b),(d, c)\} \ldots(i v)$
From Eqs. (iii) and (iv), we get
$A \times(B \cap C)=(A \times B) \cap(A \times C)$

Hence verified.

69. For all $x_{1} x_{2} \in A$
if $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$ then f is one one
Now $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\frac{x_{1}-2}{x_{1}-3}=\frac{x_{2}-2}{x_{2}-3}$
Cross multiplying and solving, we get
$x_{1}=x_{2}$
f is one - one
$y=\frac{(x-2)}{(x-3)}$
$(x-3) y=x-2$
$x y-3 y=x-2$
$x y-x=3 y-2$
$x=\frac{(3 y-2)}{(y-1)}$
$f\left(\frac{3 y-2}{y-1}\right)=y$
Hence f is onto.
70. i. a. Let $(x, y) \in \mathrm{R}$
$\Rightarrow x-y$ is divisible by n .
$\Rightarrow x-y=k n$ for some $\mathrm{k} \in \mathrm{Z}$
$\Rightarrow y-x=(-k) n$
$\Rightarrow y-x$ is divisible by n .
$\Rightarrow(y, x) \in R$
b. Let $(x, y) \in R$ and $(\mathrm{y}, \mathrm{z}) \in \mathrm{R}$

Now, $(x, y) \in R \Rightarrow x-y$ is divisible by n .
$\Rightarrow x-y=k n$ for some $\mathrm{k} \in \mathrm{Z}$
Also, $(y, z) \in R \Rightarrow y-z$ is divisible by n .
$\Rightarrow y-z=m n$ for some $\mathrm{m} \in \mathrm{Z}$.
$\Rightarrow(x-y)+(y-z)=k n+m n$
$\Rightarrow x-z=(k+m) n$
$\Rightarrow \mathrm{x}-\mathrm{z}$ is divisible by n .

$$
\Rightarrow(\mathrm{x}, \mathrm{z}) \in R
$$

ii. Here, $f(x)=\frac{x^{2}-9}{x-3}$
$\mathrm{f}(\mathrm{x})$ assume all real values of x except for $\mathrm{x}-3=0$
i.e., $x=3$.

Thus, domain of $f(x)=R-\{3\}$.
Let $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$\therefore \quad y=\frac{x^{2}-9}{x-3}=\frac{(x+3)(x-3)}{(x-3)}$
$\Rightarrow y=x+3$
Since y takes all real values except 6 .
Thus, range of $f(x)=R-\{6\}$.
iii. Here, $f(x)=\frac{x^{2}+3 x+5}{x^{2}+x-6}$
$=\frac{x^{2}+3 x+5}{(x+3)(x-2)}$
The function $\mathrm{f}(\mathrm{x})$ is defined for all values of x except for $x+3=0$ and $x-2=0$ i.e., $x=-3$ and $x=2$.
Thus, domain of $f(x)=R-\{-3,2\}$.
71. State True or False:
(i) (a) True

Explanation: True
(ii) (a) True

Explanation: True
(iii) (b) False

Explanation: False
(iv) (b) False

Explanation: False
(v) (a) True

Explanation: True

