Solution

QUESTION BANK (SETS)

Class 11 - Mathematics

1. (a) 2^{n}

Explanation: 2^{n}
The no. of subsets containing n elements is 2^{n}.
2. (d) 6,3

Explanation: Since, let A and B be such sets, i.e., $n(A)=m$, and $n(B)=n$
Thus, $n(P(A))=2^{m}, n(P(B))=2^{n}$
Therefore, $n(P(A))-n(P(B))=56$, i.e., $2^{m}-2^{n}=56$
$\Rightarrow 2^{\mathrm{n}}\left(2^{\mathrm{m}-\mathrm{n}}-1\right)=2^{3} 7$
$\Rightarrow \mathrm{n}=3,2^{\mathrm{m}-\mathrm{n}}-1=7$
$\Rightarrow \mathrm{m}=6$
3. (b) $\}$

Explanation: Here value of x is not possible so A is a null set.
4. (d) $B \subseteq A$

Explanation: $B \subseteq A$
Because B is contained in A..So the union of these two will be A
5. (d) A

Explanation: Common between set A and $(A \cup B)$ is set A itself
6. (d) $\mathrm{F}_{2} \cup \mathrm{~F}_{3} \cup \mathrm{~F}_{4} \cup \mathrm{~F}_{1}$

Explanation: We know that
Every rectangle, square and rhombus is a parallelogram
But, no trapezium is a paralleogrm
Thus, $\mathrm{F}_{1}=\mathrm{F}_{2} \cup \mathrm{~F}_{3} \cup \mathrm{~F}_{4} \cup \mathrm{~F}_{1}$
7. (d) $\{x: x \in R, 4 \leq x<5\}$

Explanation: Set A represents the elements which are greater or equals to 4 and the elements are real no. $\mathrm{A}[4, \infty)$
Set B represents the elements which are less than 5 and are real no. $\mathrm{B}(-\infty, 5)$
So if we represent these two in number line we can see the common region is between 4(included) and 5(excluded).
8. (c) $\mathrm{A} \cap \mathrm{B}=\phi$

Explanation: We have, $\mathrm{A}=\left\{(x, y) \left\lvert\, y=\frac{1}{x}\right., 0 \neq x \in \mathbf{R}\right\}$ and $\mathrm{B}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{y}=-\mathrm{x}, \mathrm{x} \in \mathrm{R}\}$
For any element of $\mathrm{A} \cap \mathrm{B}, \mathrm{A}$ and B will have same value of y
$\Rightarrow-x^{2}=1$
$\Rightarrow \mathrm{x}^{2}=-1$
Square of any value cannot be negative
Thus, there is no value of x for which A and B will have same value of y
$\Rightarrow \mathrm{A} \cap \mathrm{B}=\phi$
9. (d) $B^{c} \subset A^{c}$

Explanation: Let $\mathrm{A} \subset \mathrm{B}$
To prove $B^{C} \subset A^{C}$, it is enough to show that $x \in B^{C} \Rightarrow x \in A^{C}$
Let $\mathrm{x} \in \mathrm{B}^{\mathrm{C}}$
$\Rightarrow \mathrm{x} \notin \mathrm{B}$
$\Rightarrow \mathrm{x} \notin \mathrm{A}$ since $\mathrm{A} \subset \mathrm{B}$
$\Rightarrow \mathrm{x} \in \mathrm{A}^{\mathrm{C}}$
Hence $B^{C} \subset A^{C}$
10. (c) 45

Explanation: Now to find value of n
Since elements are not repeating, number of elements in $A_{1} \cup A_{2} \cup A_{3} \cup \ldots \ldots \ldots \cup A_{30}$ is 30×5
But each element is used 10 times
Thus, $10 \times \mathrm{S}=30 \times 5$
$\Rightarrow 10 \times \mathrm{S}=150$
$\Rightarrow \mathrm{S}=15$
Since elements are not repeating, number of elements in $B_{1} \cup B_{2} \cup B_{3} \cup \ldots \ldots \ldots \cup B_{n}$ is $3 \times n$
But each element is used 9 times
Thus, $9 \times \mathrm{S}=3 \times \mathrm{n}$
$\Rightarrow 9 \times \mathrm{S}=3 \mathrm{n}$
$\Rightarrow S=\frac{n}{3}$
$\Rightarrow \frac{n}{3}=15$
$\Rightarrow \mathrm{n}=45$
Therefore, the value of n is 45
11. (d) four points

Explanation: From A, $x^{2}+y^{2}=25$ and from B, $x^{2}+9 y^{2}=144$
\therefore From B, $\left(x^{2}+y^{2}\right)+8 y^{2}=144$
$\Rightarrow 25+8 \mathrm{y}^{2}=144$
$\Rightarrow 8 \mathrm{y}^{2}=119$
$\Rightarrow \mathrm{y}= \pm \sqrt{\frac{119}{8}}$
$\therefore \mathrm{x}^{2}+\mathrm{y}^{2}=25 \Rightarrow \mathrm{x}^{2}=25-\mathrm{y}^{2}=25-\frac{119}{8}=\frac{81}{8}$
$\Rightarrow \mathrm{x}= \pm \sqrt{\frac{81}{8}}$
Since we solved equations simultaneously, therefore $A \cap B$ has four points A has 2 elements \& B has 2 elements.
12. (d) $\{1,2,3,4\}$

Explanation: Given $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\}$
$B \cap C=\{4\}$
$A \cup(B \cap C)=\{1,2,3,4\}$
13. (d) $(4,5)$

Explanation: We have, $A=\{x: x \in R, x>4\}$ and $B=\{x \in R: x<5\}$
$A \cap B=(4,5)$
14. (b) $\{3,6,9,12,18,21,24,27\}$

Explanation: Since set B represent multiple of 5 so from Set A common multiple of 3 and 5 are excluded.
15. (c) $\{3,5,9\}$

Explanation: The union of two sets A and B is the set of elements in A, or B, or both.
So smallest set $\mathrm{A}=\{3,5,9\}$
16. (a) A and the complement of B are always non-disjoint

Explanation: Let $\mathrm{x} \in \mathrm{A}$, then $\mathrm{x} \notin \mathrm{B}$ as A is not a subset of B
$\therefore \mathrm{x} \in \mathrm{A}$ and $\mathrm{x} \notin \mathrm{B}$
$\Rightarrow x \in A$ and $x \in B^{\prime}$
$\Rightarrow \mathrm{x} \in \mathrm{A} \cap \mathrm{B}^{\prime}$
$\Rightarrow \mathrm{A}$ and B ' are non - disjoint.
17. (c) 7,4

Explanation: Now to find value of m and n
The number of subsets of a set containing x elements is given by 2^{x}
According to question: $2^{\mathrm{m}}-2^{\mathrm{n}}=112$
$\Rightarrow 2^{\mathrm{n}}\left(2^{\mathrm{m}-\mathrm{n}}-1\right)=16 \times 7$
$\Rightarrow 2^{\mathrm{n}}\left(2^{\mathrm{m}-\mathrm{n}}-1\right)=2^{4} \times 7$

On comparing on both sides $2^{\mathrm{n}}=2^{4}$ and $2^{\mathrm{m}-\mathrm{n}}-1=7$
$\Rightarrow \mathrm{n}=4$ and $2^{\mathrm{m}-\mathrm{n}}=8$
$\Rightarrow 2^{m-n}=2^{3}$
$\Rightarrow \mathrm{m}-\mathrm{n}=3$
$\Rightarrow \mathrm{m}-4=3$
$\Rightarrow \mathrm{m}=7$
Therefore, the value of m and n is 7 and 4 respectively
18. (b) 20

Explanation: The correct answer is (B)
Since, $\mathrm{n}\left(\mathrm{X}_{\mathrm{r}}\right)=5, \bigcup_{r=1}^{20} X_{r}=\mathrm{S}$, we obtain $\mathrm{n}(\mathrm{S})=100$
But each element of S belong to exactly 10 of the X 's
Thus, $\frac{100}{10}=10$ are the number of distinct elements in S .
Also each element of S belong to exactly 4 of the Y_{r} 's and each $\mathrm{Y}_{\mathrm{r}^{\prime} \mathrm{s}}$ contain 2 elements. If S has n number of Y_{r} in it.
Then $\frac{2 n}{4}=10$
which gives $\mathrm{n}=20$
19. (d) $(x: x \neq x)$.

Explanation: $(\mathrm{x}: \mathrm{x} \neq \mathrm{x})$. x is not equal to x is null set as it refers to there is no element in the set.And it also representing the set builder form pattern
20. (a) an infinite set

Explanation: Set A $=\{2,3,5,7, \ldots\}$ so it is infinite.
21. We know that all factors of 24 are $1,2,3,4,6,8,12,24$
$\therefore A=\{1,2,3,4,6,8,12,24\}$
22. Here $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\}$
$B \cap D=\{7,9,11,13\} \cap\{15,17\}=\phi$
23. Here, $x+3=3$
$\mathrm{x}=0$
So, $\{x: x+3=3\}=\{0\}$
It is not ϕ
\therefore The correct form would be
$\{x: x+3=3\}=\{0\}$
24. The answer is $\mathrm{D}=[-5,2]$
$D=\{x: x \in R,-5 \leq x \leq 2\}$ is a closed interval from -5 to 2 and contains the end points.
25. We have
$C=\{x: x \in R,-2 \leq x<0\}=[-2,0)$.
length $(C)=0-(-2)=2$.
26. The answer is $\mathrm{A} \subset \mathrm{B}$

Explanation: we have, $A=\{$ set of real numbers $\}$ and $B=\{$ set of complex numbers $\}$, a combination of the real and imaginary number in the form of $\mathrm{a}+\mathrm{ib}$, where a and b are real, and i is imaginary.
Since, any real number can be expressed as complex number, $\mathrm{A} \subset \mathrm{B}$.
27. The interval $[6,12]$ can be written in set builder form as $\{x: x \in R, 6 \leqslant x \leqslant 12\}$
28. $\mathrm{C}=\{\mathrm{x}: \mathrm{x}$ is a two-digit natural number such that the sum of its digit is 8$\}$
$\therefore C=\{17,26,35,44,53,62,71,80\}$
29. Note that $x \in X \cap Y \Rightarrow x \in X$ and $x \in Y$

Thus $X \cap Y \subset X$
Also, since $X \subset Y$,
$x \in X \Rightarrow x \in Y \Rightarrow x \in X \cap Y$
so that $X \subset X \cap Y$
Therefore the result $\mathrm{X}=\mathrm{X} \cap \mathrm{Y}$ follows.
30. Therefore, $(-7,0)=\{x: x \in R$ and $-7<x<0\}$
31. Here $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\}$
$Y-X=\{f, b, d, g\}-\{a, b, c, d\}$
$=\{\mathrm{f}, \mathrm{g}\}$
32. Here $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\}$
$A \cap B=\{3,5,6,7,11\} \cap\{7,9,11,13\}=\{7,9,11\}$
33. $\mathrm{C}=\left\{\mathrm{x}: \mathrm{x}\right.$ is an integer, $X^{2} \leqslant 4$
$\therefore X^{2} \leqslant 4 \Rightarrow x \leqslant \pm 2 \Rightarrow-2 \leqslant x \leqslant 2 \quad \therefore C=(-2,-1,0,1,2)$
34. Since there is no natural number between 4 and 5 . Therefore , C is an empty set.
35. Therefore, $\{x: x \in R,-12<x<-10\}=(-12,-10)$.

Length $=-10-(-12)=2$
36. We know that, $\mathrm{A} \Delta \mathrm{B}$ represents the symmetric difference of sets A and B .

That is,
$\mathrm{A} \Delta \mathrm{B}=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A})$
According to the question,
$A=\{1,3,5,7,9\}$, and $B=\{2,3,5,7,11\}$
Then, $A-B=\{1,3,5,7,9\}-\{2,3,5,7,11\}=\{1,9\}$
and $\mathrm{B}-\mathrm{A}=\{2,3,5,7,11\}-\{1,3,5,7,9\}=\{2,11\}$
Hence,
$\mathrm{A} \Delta \mathrm{B}=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A})$
$=\{1,9\} \cup\{2,11\}$
$=\{1,2,9,11\}$
37. Venn diagram showing relation of U, A, B and C sets in below.

We have, U is a universal set
The intersection of two sets A and B, consists of all elements that are both in A and B.
For example: $\{1,2\} \cap\{2,3\}=\{2\}$
Thus, $A=\{2,4,6,8,12,20\}, B=\{3,6,9,12,15\}$ and $C=\{5,10,15,20\}$
$\Rightarrow A \cap B=\{6,12\}, B \cap C=\{15\}, A \cap C=\{20\}, A \cap B \cap C=\{\phi\}$
The venn diagram showing relation of given sets is as follows:

38. Here, we have,

A contains two elements, namely 1 and $\{2,3\}$
$\{2,3\}=B$, then $A=\{1, B\}$
$\therefore P(A)=\{\phi,\{1\},\{B\},\{1, B\}\}$
$\Rightarrow P(A)=\{\phi,,\{1\},\{\{2,3\}\},\{1,\{2,3\}\}\}$.
39. Let H be the set of students who know Hindi and E be the set of students who know English.

Here $\mathrm{n}(\mathrm{H})=100, \mathrm{n}(\mathrm{E})=50$ and $n(H \cap E)=25$
We know that $n(H \cup E)=n(H)+n(E)-n(H \cap E)$
$=100+50-25=125$.
40. Here, $\mathrm{B}-\mathrm{C}=$ represents all elements in B that are not in C
$B \cap C=\{e, g\}$
$A-(B \cap C)=\{a, b, c, d\}$.
$(\mathrm{A}-\mathrm{B})=\{\mathrm{b}, \mathrm{d}\}$
$(A-C)=\{a, c, d\}$
$(A-B) \cap(A-C)=\{a, b, c, d\} \ldots . .(2)$,
From (1) and (2)
$\Rightarrow \mathrm{A}-(\mathrm{B} \cap \mathrm{C})=(\mathrm{A}-\mathrm{B}) \cap(\mathrm{A}-\mathrm{C})$
Hence proved.
41. Suppose $B=\{x \mid x \in X$ and $x+5=8\}$

We get, $B=\{3\}$
as $x=3 \in X$ and $3+5=8$ and there is no other element belonging to X such that $x+5=8$.
42. We know that, for any given set having m elements, the number of subsets can be represented as 2^{m}

According to the given condition,
$2^{\mathrm{m}}=112+2^{\mathrm{n}}$
$\Rightarrow 2^{\mathrm{m}}-2^{\mathrm{n}}=112=128-16$
$\Rightarrow 2^{\mathrm{m}}-2^{\mathrm{n}}=2^{7}-2^{4}$ (as $2^{7}=128$ and $2^{4}=16$)
On comparing both the sides,
$2^{\mathrm{m}}=2^{7}$ and $2^{\mathrm{n}}=2^{4}$
$\therefore \mathrm{m}=7$ and $\mathrm{n}=4$
43. The given set T is not an empty set.

Justification

$\because \frac{x+5}{x-7}-5=\frac{4 x-40}{13-x}$
$\Rightarrow \frac{x+5}{x-7}-\frac{5}{1}=\frac{4 x-40}{13-x}$
$\Rightarrow \frac{x+5-5 x+35}{x-7}=\frac{4 x-40}{13-x}$
$\Rightarrow \frac{40-4 x}{x-7}=\frac{4 x-40}{13-x}$
$\Rightarrow \frac{-(4 x-40)}{x-7}-\frac{4 x-40}{13-x}=0$
$\Rightarrow \quad(4 x-40)\left[\frac{6}{(13-x)(x-7)}\right]=0$
$\Rightarrow 4 x-40=0$
$\therefore x=10$
$\Rightarrow T$ is not an empty set.
44. Let $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{2,3,4,5,6\}, \mathrm{C}=\{2,3,4,9,10\}$
$\therefore A \cap B=\{1,2,3,4\} \cap\{2,3,4,5,6\}$
$=\{2,3,4\}$
$A \cap C=\{1,2,3,4\}, \mathrm{B}=\{2,3,4,5,6\}, \mathrm{C}=\{2,3,4,9,10\}$
$=\{2,3,4\}$
$A \cap C=\{1,2,3,4\} \cap\{2,3,4,9,10\}$
$=\{2,3,4\}$
Now we have $A \cap B=A \cap C$
But $B \neq C$
45. Here, we have $X \subset A$ and $X \not \subset B$
$\Rightarrow X$ is a subset of A but X is not a subset of B
$\Rightarrow \mathrm{X} \in \mathrm{P}(\mathrm{A})$ but $\mathrm{X} \notin \mathrm{P}$ (B), we get
$\Rightarrow X=\{d\},\{a, b, d\},\{b, c, d\},\{a, c, d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, c, d\}$.
46. To prove: $\mathrm{A} \cup \mathrm{C}=\mathrm{C} \cup \mathrm{A}$

Since the element of set C is not provided,
Supposex be any element of C
L.H.S = A \cup C
$=\{a, b, c, d, e\} \cup\{x \mid x \in C\}$
$=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{x}\}$
$=\{x, a, b, c, d, e\}$
$=\{x \mid x \in C\} \cup\{a, b, c, d, e\}$
$=C \cup A$
= R.H.S
Hence proved.
47. Suppose $x \in A \cap B$
$\Rightarrow x \in A$ and $x \in B$
$\Rightarrow \mathrm{x} \in \mathrm{A}$
$\Rightarrow(A \cap B) \subset A$ Hence Proved
48. L.H.S , $A \cap(B-C)=\left(A \cap\left(B \cap C^{\prime}\right)\left[\because B-C=B \cap C^{\prime}\right]\right.$
$=(A \cap B) \cap C^{\prime}$
$=\phi \cup\left((\mathrm{A} \cap \mathrm{B}) \cap \mathrm{c}^{\prime}\right)$
$=\left((\mathrm{A} \cap \mathrm{B}) \cap \mathrm{A}^{\prime}\right) \cup\left((\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}^{\prime}\right)\left[\because(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{A}^{\prime}=\phi\right]$
$=(A \cap B) \cap\left(A^{\prime} \cup C^{\prime}\right)$
$=(A \cap B) \cap(A \cap C)^{\prime}$
$=(A \cap B)-(A \cap C)$
=R.H.S
hence proved
49. We know that,Natural numbers $=1,2,3,4,5,6, \ldots$

If $x=1$, then $2 x+3=2(1)+3=2+3=5 \neq 4$
\therefore no elements in the set B because the given equationequation $2 x+3=4$ is not satisfied for any natural number of x.
Hence, It is a null set.
50. We are given the following tree sets :
$L=\{1,2,3,4\}, M=\{3,4,5,6\}$ and $N=\{1,3,5\}$.
We are to verify the following :
$L-(M \cup N)=(L-M) \cap(L-N)$.
We have
$\mathrm{M} \cup \mathrm{N}=\{3,4,5,6\} \cup\{1,3,5\}=\{1,3,4,5,6\}$
So, L.H.S. $=\mathrm{L}-(\mathrm{M} \cup \mathrm{N})=\{1,2,3,4\}-\{1,3,4,5,6\}=\{2\}$.
Now,
$\mathrm{L}-\mathrm{M}=\{1,2,3,4\}-\{3,4,5,6\}=\{1,2\}$
$\mathrm{L}-\mathrm{N}=\{1,2,3,4\}-\{1,3,5\}=\{2,4\}$.
So, R.H.S. $=(\mathrm{L}-\mathrm{M}) \cap(\mathrm{L}-\mathrm{N})=\{1,2\} \cap\{2,4\}=\{2\}$.
Therefore, we get
$L-(M \cup N)=(L-M) \cap(L-N)$.
Hence verified.
51. Given: $A=B$

To Prove: $A \subseteq B$ and $B \subseteq A$
Proof:As we know that every element of A is in B and every element of B is in A in equal sets
$\therefore A \subseteq B$ and $B \subseteq A$
$\therefore A=B \Rightarrow A \subseteq B$ and $B \subseteq A$
Now, Suppose $A \subseteq B$ and $B \subseteq A$
By the definition of a subset, if $A \subseteq B$ then it follows that every element of A is in B and if $B \subseteq A$ then it follows that every element of B is in A.
$\therefore A=B$
$\therefore A=B \Leftrightarrow A \subseteq B$ and $B \subseteq A$
Hence Proved.
52. Natural numbers start from
$A=\{1,2,3,4,5,6,7\}$
$B=\{2,3,5,7\}$
$C=\{1,3,5,7,9\}$
$B \cup C=\{1,2,3,5,7,9\}$
$A \cap(B \cup C)=\{1,2,3,5,7\} \ldots(1)$
$A \cap B=\{2,3,5,7\}$
$A \cap C=\{1,3,5,7\}$
$(A \cap B) \cup(A \cap C)=\{1,2,3,5,7\}$.
Using (1) and (2) ,
$\Rightarrow A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
Hence proved.
53. Given, $a_{1}=1$ and $a_{n+1}=3 a_{n}$, for all $\mathrm{n} \in \mathrm{N}$

Putting $\mathrm{n}=1$ in $\mathrm{a}_{\mathrm{n}+1}=3 \mathrm{a}_{\mathrm{n}}$, we get
$a_{2}=3 a_{1}=3 \times 1=3 \quad\left[\because \mathrm{a}_{1}=1\right]$
Putting $\mathrm{n}=2$ in $\mathrm{a}_{\mathrm{n}+1}=3 \mathrm{a}_{\mathrm{n}}$, we get
$a_{3}=3 a_{2}=3 \times 3=3^{2} \quad\left[\because a_{2}=3\right]$

Putting $\mathrm{n}=3$ in $\mathrm{a}_{\mathrm{n}+1}=3 \mathrm{a}_{\mathrm{n}}$, we get
$a_{4}=3 a_{3}=3 \times 3^{2}=3^{3} \quad\left[\because a_{3}=3\right]$
Similarly, we obtain
$a_{5}=3 a_{4}=3 \times 3^{3}=3^{4}$,
$a_{6}=3 a_{5}=3 \times 3^{4}=3^{5}$ and so on.
Hence, $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots ..\right\}=\left\{1,3,3^{2}, 3^{3}, 3^{4}, 3^{5}, \ldots ..\right\}$
54. $A=\{2,3\}$ and $B=\left\{x: x\right.$ is solution of $\left.x^{2}+5 x+6=0\right\}$

Now $x^{2}+5 x+6=0 \Rightarrow x^{2}+3 x+2 x+6=0$
$\Rightarrow(\mathrm{x}+3)(\mathrm{x}+2)=0 \Rightarrow \mathrm{x}=-3,-2$
$\therefore B=\{-2,-3\}$
Hence A and B are not equal sets.
55. We have, the set of integers $=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$
$x=-4, x^{2}=(-4)^{2}=16>9$
$x=-3, x^{2}=(-3)^{2}=9$
$x=-2, x^{2}=(-2)^{2}=4$
$x=-1, x^{2}=(-1)^{2}=1$
$\mathrm{x}=0, \mathrm{x}^{2}=(0)^{2}=0$
$x=1, x^{2}=(1)^{2}=1$
$x=2, x^{2}=(2)^{2}=4$
$x=3, x^{2}=(3)^{2}=9$
$x=4, x^{2}=(4)^{2}=16$
The elements of this set are $-3,-2,-1,0,1,2,3$
Therefore, $\mathrm{D}=\{-3,-2,-1,0,1,2,3\}$
56. Here $A-(B-C)=A-(B \cap C)\left[\because A-B=A \cap B^{\prime}\right]$
$=A \cap\left(B \cap C^{\prime}\right)^{\prime}$
$=A \cap\left(B^{\prime} \cap C\right)\left[\because(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}\right]$
$=\left(A \cap B^{\prime}\right) \cup(A \cap C)$
$=\left(A-B^{\prime}\right) \cup(A \cap C)$
57. $\mathrm{A}=\{\mathrm{x}: \mathrm{x}$ is an odd natural number $\}$
$\therefore A=\{1,3,5,7, \ldots\}$
58.

Suppose, $x \in(A-B) \cap(C-B)$
$\Rightarrow \mathrm{x} \in \mathrm{A}-\mathrm{B}$ and $\mathrm{x} \in \mathrm{C}-\mathrm{B}$
$\Rightarrow(x \in A$ and $x \notin B)$ and $(x \in C$ and $x \notin B)$
$\Rightarrow(x \in A$ and $x \in C)$ and $x \notin B$
$\Rightarrow(x \in A \cap C)$ and $x \notin B$
$\Rightarrow \mathrm{x} \in(\mathrm{A} \cap \mathrm{C})-\mathrm{B}$
Thus, $(A-B) \cap(C-B) \subset(A \cap C)-B \ldots(1)$
Now, conversely
Suppose, $y \in(A \cap C)-B$
$\Rightarrow \mathrm{y} \in(\mathrm{A} \cap \mathrm{C})$ and $\mathrm{y} \notin \mathrm{B}$
$\Rightarrow(y \in A$ and $y \in C)$ and $(y \notin B)$
$\Rightarrow(y \in A$ and $y \notin B)$ and $(y \in C$ and $y \notin B)$
$\Rightarrow y \in(A-B)$ and $y \in(C-B)$
$\Rightarrow y \in(A-B) \cap(C-B)$
Therefore, $(A \cap C)-B \subset(A-B) \cap(C-B) \ldots(2)$
From (1) and (2), we get
$(\mathrm{A}-\mathrm{B}) \cap(\mathrm{C}-\mathrm{B})=(\mathrm{A} \cap \mathrm{C})-\mathrm{B}$
59. Let $\mathrm{x} \in A \cup(B-A)$
$\Rightarrow x \in A$ or $x \in(B-A)$
$\Rightarrow x \in A$ or $x \in B$ and $x \notin A$
$\Rightarrow x \in B$
$\Rightarrow x \in(A \cup B)[\because B \subset(A \cup B)]$
This is true for all $x \in A \cup(B-A)$
$\therefore A \cup(B-A) \subset(A \cup B) \ldots$..(i)
Conversely,
Let $x \in(A \cup B)$
$\Rightarrow x \in A$ or $x \in B$
$\Rightarrow x \in A$ or $x \in(B-A)[\because B \subset(B-A)]$
$\Rightarrow x \in A \cup(B-A)$
$\therefore(A \cup B) \subset A \cup(B-A)$
From (i) and (ii), we get
$A \cup(B-A)=(A \cup B)$
60. Here
$\mathrm{n}(\mathrm{U})=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}+\mathrm{g}+\mathrm{h}=60 \ldots$....(i)
$\mathrm{n}(\mathrm{H})=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=25 \ldots$...(ii)
$\mathrm{n}(\mathrm{T})=\mathrm{b}+\mathrm{c}+\mathrm{f}+\mathrm{g}=26$
$\mathrm{n}(\mathrm{I})=\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}=26$
$n(H \cap I)=\mathrm{c}+\mathrm{d}=9 \ldots$...(v)
$n(H \cap T)=\mathrm{b}+\mathrm{c}=11 \ldots . .(\mathrm{vi})$
$n(T \cap I)=\mathrm{c}+\mathrm{f}=8 \ldots .$. (vii)
$n(H \cap T \cap I)=$ c $=3 \ldots$...(viii)

Putting value of c in (vii),
$3+\mathrm{f}=8 \Rightarrow \mathrm{f}=5$
Putting value of c in (vi),
$3+b=11 \Rightarrow b=8$
Putting values of c in (v),
$3+\mathrm{d}=9 \Rightarrow \mathrm{~d}=6$
Putting value of $\mathrm{c}, \mathrm{d}, \mathrm{f}$ in (iv),
$3+6+e+5=26 \Rightarrow e=26-14=12$
Putting value of $\mathrm{b}, \mathrm{c}, \mathrm{f}$ in (iii),
$8+3+5+\mathrm{g}=26 \Rightarrow \mathrm{~g}=26-16=10$
Putting value of b, c, d in (ii)
$a+8+3+6=25 \Rightarrow a=25-17=8$
Number of people who read exactly one newspapers
$=\mathrm{a}+\mathrm{e}+\mathrm{g}$
$=8+12+10=30$
61. Here $A \cup X=B \cup X$ for some set X
$\Rightarrow A \cap(A \cup X)=A \cap(B \cup X)$
$\Rightarrow A=(A \cap B) \cup(A \cap X)[\because A \cap(A \cup X)=A]$
$\Rightarrow A=(A \cap B) \cup \phi[\therefore A \cap(A \cup X)=A]$
$\Rightarrow A=A \cap B$
$\Rightarrow A \subset B \ldots$ (1)
Also $A \cup X=B \cup X$
$\Rightarrow B \cap(A \cup X)=B \cap(B \cup X)$
$\Rightarrow(B \cap A) \cup(B \cap X)=B[\because B \cap(B \cap X)=B]$
$\Rightarrow(B \cap A) \cup \phi=B[\therefore B \cap X=\phi]$
$\Rightarrow B \cap A=B$
\ldots (ii) $\Rightarrow B \subset A \ldots$ (ii)
From (i) and (ii), we have
$A=B$
62. As $A \subset B$ the set A is inside set B

Therefore, $\mathrm{A} \cup \mathrm{B}=\mathrm{B}$
Taking compliment
$\Rightarrow(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{B}^{\prime}$
Using De-Morgan's law $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$
$\Rightarrow A^{\prime} \cap B^{\prime}=B^{\prime} . .$. (i)
Now we know that
$\mathrm{B}^{\prime}=\left(\mathrm{B}^{\prime}-\mathrm{A}^{\prime}\right)+\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)$

Using (i), we get
$\Rightarrow \mathrm{B}^{\prime}=\left(\mathrm{B}^{\prime}-\mathrm{A}^{\prime}\right)+\mathrm{B}^{\prime}$
$\Rightarrow\left(\mathrm{B}^{\prime}-\mathrm{A}^{\prime}\right)=\mathrm{B}^{\prime}-\mathrm{B}^{\prime}$
$\Rightarrow\left(\mathrm{B}^{\prime}-\mathrm{A}^{\prime}\right)=\phi$
Hence proved.
63. The set of lines which are parallel to the x-axis is an infinite set because we can draw infinite number of lines parallel to x-axis.
64. i. We have

$$
\begin{aligned}
& A=(A \cap U) \\
& \Rightarrow A=A \cap\left(B \cup B^{\prime}\right)\left[\because B \cup B^{\prime}=U\right] \\
& \Rightarrow A=(A \cap B) \cup\left(A \cap B^{\prime}\right)[\because \cap \text { is distributive over union }], \text { therefore we get } \\
& \Rightarrow A=(A \cap B) \cup \phi\left[\because A \cap B^{\prime}=\phi\right] \\
& \Rightarrow A=A \cap B \\
& \therefore A \subset B
\end{aligned}
$$

ii. From (i), we have

$$
\begin{aligned}
& \mathrm{A} \cap \mathrm{~B}^{\prime}=\phi \\
& \Leftrightarrow\left(\mathrm{A} \cap \mathrm{~B}^{\prime}\right)^{\prime}=\phi^{\prime} \\
& \Leftrightarrow \mathrm{A}^{\prime} \cup\left(\mathrm{B}^{\prime}\right)^{\prime}=\mathrm{U}\left[\because \phi^{\prime}=\mathrm{U}\right] \\
& \Leftrightarrow \mathrm{A}^{\prime} \cup \mathrm{B}=\mathrm{U}\left[\because\left(\mathrm{~B}^{\prime}\right)^{\prime}=\mathrm{B}\right]
\end{aligned}
$$

Therefore, $\mathrm{A} \cap \mathrm{B}^{\prime}=\phi \Leftrightarrow \mathrm{A}^{\prime} \cup \mathrm{B}=\mathrm{U}$ and, $\mathrm{A} \cap \mathrm{B}^{\prime}=\phi \Rightarrow \mathrm{A} \subset \mathrm{B}$

$$
\therefore A^{\prime} \cup B=U \Rightarrow A \subset B
$$

65. Here, $\mathrm{x} \in \mathrm{Z}$ and $|\mathrm{x}| \leq 2$

Z is a set of integers ,the theref
Integers are $\ldots-3,-2,-1,0,1,2,3, \ldots$
Now, if we take $x=-3$ then we have to check that it satisfies the given condition $|x| \leq 2$
$|-3|=3>2$
Therefore, $-3 \notin \mathrm{H}$
If $x=-2$ then $|-2|=2$ [satisfying $|x| \leq 2$]
$\Rightarrow-2 \in H$
If $x=-1$ then $|-1|=1$ [satisfying $|x| \leq 2] \Rightarrow-1 \in H$
If $x=0$ then $|0|=0$ [satisfying $|x| \leq 2$]
$\Rightarrow 0 \in \mathrm{H}$
If $\mathrm{x}=1$ then $|1|=1$ [satisfying $|\mathrm{x}| \leq 2$]
$\Rightarrow 1 \in \mathrm{H}$
If $x=2$ then $|2|=2$ [satisfying $|x| \leq 2$]
$\Rightarrow 2 \in \mathrm{H}$
If $x=3$ then $|3|=3>2$ [satisfying $|x| \leq 2$]
$\Rightarrow 3 \notin \mathrm{H}$
Therefore, $\mathrm{H}=\{-2,-1,0,1,2\}$
66. (i) Let $A=\{2,3,4,5\}$ and $B=\{3,6\}$

Now $A \cap B=\{2,3,4,5\} \cap\{3,6\}$
$=\{3\}$
Hence A and B are not disjoint sets. So the statements is true.
67. We have, $(A \cap B)=\{x: x \in A$ and $x \in B\}$
$=\{7\}$
$(A \cap B)^{\prime}$ means Complement of $(A \cap B)$ with respect to universal set U.
Therefore, $(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{U}-(\mathrm{A} \cap \mathrm{B})$
$U-(A \cap B)^{\prime}$ is defined as $\left\{x \in U: x \notin(A \cap B)^{\prime}\right\}$
$U=\{2,3,5,7,9\}$
$(A \cap B) '=\{7\}$
$\mathrm{U}-(\mathrm{A} \cap \mathrm{B})^{\prime}=\{2,3,5,9\}$
A^{\prime} means Complement of A with respect to universal set U.
Therefore, $\mathrm{A}^{\prime}=\mathrm{U}-\mathrm{A}$
U - A is defined as $\{\mathrm{x} \in \mathrm{U}: \mathrm{x} \notin \mathrm{A}\}$
$\mathrm{U}=\{2,3,5,7,9\}$
A $=\{3,7\}$
$A^{\prime}=\{2,5,9\}$
B^{\prime} means Complement of B with respect to universal set U .
Therefore, B' = U - B
$\mathrm{U}-\mathrm{B}$ is defined as $\{\mathrm{x} \in \mathrm{U}: \mathrm{x} \notin \mathrm{B}\}$
$\mathrm{U}=\{2,3,5,7,9\}$
$B=\{2,5,7,9\}$.
$\mathrm{B}^{\prime}=\{3\}$
$A^{\prime} \cup B^{\prime}=\{x: x \in A$ or $x \in B\}$
$=\{2,3,5,9\}$
Hence verified.
68. Let x $x \in A \cap(B \cup C)$
$\Rightarrow x \in A$ and $x \in(B \cup C)$
$\Rightarrow x \in A$ and $(\mathrm{X} \in \mathrm{B}$ or $\mathrm{X} \in \mathrm{C})$
$\Rightarrow(x \in A$ and $x \in B)$ or $(\mathrm{x} \in \mathrm{A}$ and $\mathrm{x} \in \mathrm{C})$
$\Rightarrow(x \in A \cap B)$ or $(x \in A \cap C)$
$\Rightarrow x \in(A \cap B) \cup(A \cap C)$
$\Rightarrow A \cap(B \cup C) \subset(A \cap B) \cup(A \cap C)$.
Now let $y \in(A \cap B) \cup(A \cap C)$
$\Rightarrow \mathrm{y} \in(\mathrm{A} \cap \mathrm{B})$ or $\mathrm{y} \in(\mathrm{A} \cap \mathrm{C})$
$\Rightarrow(\mathrm{y} \in \mathrm{A}$ and $y \in B)$ or $(\mathrm{y} \in \mathrm{A}$ and $\mathrm{y} \in \mathrm{C})$
$\Rightarrow \mathrm{y} \in \mathrm{A}$ and $(y \in B$ or $y \in C)$
$\Rightarrow \mathrm{y} \in \mathrm{A}$ and $y \in(B \cup C)$
$\Rightarrow \mathrm{y} \in \mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})$
$\Rightarrow(A \cap B) \cup(A \cap C) \subset A \cap(B \cup C)$
From eqn. (i) and (ii) we get
$\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A} \cap \mathrm{C})$
69. Here
$n(U)=a+b+c+d+e+f+g+h=60$.
$\mathrm{n}(\mathrm{H})=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=25$
$\mathrm{n}(\mathrm{T})=\mathrm{b}+\mathrm{c}+\mathrm{f}+\mathrm{g}=26$
$\mathrm{n}(\mathrm{I})=\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}=26$
$n(H \cap I)=\mathrm{c}+\mathrm{d}=9$
$n(H \cap T)=\mathrm{b}+\mathrm{c}=11$
$n(T \cap I)=\mathrm{c}+\mathrm{f}=8$
$n(H \cap T \cap I)=\mathrm{c}=3$

Putting value of c in (vii),
$3+\mathrm{f}=8 \Rightarrow \mathrm{f}=5$
Putting value of c in (vi),
$3+b=11 \Rightarrow b=8$
Putting values of c in (v),
$3+\mathrm{d}=9 \Rightarrow \mathrm{~d}=6$
Putting value of $\mathrm{c}, \mathrm{d}, \mathrm{f}$ in (iv),
$3+6+e+5=26 \Rightarrow e=26-14=12$
Putting value of $\mathrm{b}, \mathrm{c}, \mathrm{f}$ in (iii),
$8+3+5+\mathrm{g}=26 \Rightarrow \mathrm{~g}=26-16=10$
Putting value of b, c, d in (ii)
$a+8+3+6=25 \Rightarrow a=25-17=8$
Number of people who read at least one of the three newspapers
$=a+b+c+d+e+f+g$
$=8+8+3+6+12+5+10=52$
70. Let $X \in A \Rightarrow\{x\} \in P(A)$
$\Rightarrow\{x\} \in P(B)[\because P(A)=P(B)]$
$\Rightarrow X \notin B$
$\therefore A \subset B \ldots$ (i)
Let $X \in B \Rightarrow\{x\} \in P(B)$
$\Rightarrow\{X\} \in P(A)[\because P(A)=P(B)]$
$\Rightarrow X \in A \ldots$ (ii)
$\therefore B \subset A$
From (i) and (ii) we have A = B
71. Let the set of students who passed in Mathematics be M, the set of students who passed in English be E and the set of students who passed in Science be S.
Then $n(U)=100, n(M)=12, n(E)=15, n(S)=8, n(E \cap M)=6, n(M \cap S)=7, n(E \cap S)=4$ and $n(E \cap M \cap S)=4$
Let us draw a Venn diagram

According to the Venn diagram,
$\mathrm{n}(\mathrm{E} \cap \mathrm{S})=4 \Rightarrow \mathrm{e}=4$
$\mathrm{n}(\mathrm{E} \cap \mathrm{M})=6 \Rightarrow \mathrm{~b}+\mathrm{e}=6 \Rightarrow \mathrm{~b}+4=6 \Rightarrow \mathrm{~b}=2$
$\mathrm{n}(\mathrm{M} \cap \mathrm{S})=7 \Rightarrow \mathrm{e}+\mathrm{f}=7 \Rightarrow 4+\mathrm{f}=7 \Rightarrow \mathrm{f}=3$
$\mathrm{n}(\mathrm{E} \cap \mathrm{S})=4 \Rightarrow \mathrm{~d}+\mathrm{e}=4 \Rightarrow \mathrm{~d}+4=4 \Rightarrow \mathrm{~d}=0$
$\mathrm{n}(\mathrm{E})=15 \Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{d}+\mathrm{e}=15 \Rightarrow \mathrm{a}+2+0+4=15 \Rightarrow \mathrm{a}=9$
$\mathrm{n}(\mathrm{M})=12 \Rightarrow \mathrm{~b}+\mathrm{c}+\mathrm{e}+\mathrm{f}=12 \Rightarrow 2+\mathrm{c}+4+3=12 \Rightarrow \mathrm{c}=3$
$\mathrm{n}(\mathrm{S})=8 \Rightarrow \mathrm{~d}+\mathrm{e}+\mathrm{f}+\mathrm{g}=8 \Rightarrow 0+4+3+\mathrm{g}=8 \Rightarrow \mathrm{~g}=1$
Hence we get,
i. Number of students who passed in English and Mathematics but not in Science, $\mathrm{b}=2$.
ii. Number of students who passed in Mathematics and Science but not in English, $\mathrm{f}=3$.
iii. Number of students who passed in Mathematics only, c = 3 .
iv. Number of students who passed in more than one subject $=b+e+d+f=2+4+0+3=9$.
72. Here, it is given: $A=\{a, e, i, o, u\}, B=\{a, d, e, o, v\}$ and $C=\{e, o, t, m\}$.
$B \cap C=\{e, o\}$ and $A \cup(B \cap C)=\{a, e, i, o, u\}$
LHS
BuC

$A \cup(B \cap C)$

R.H.S: $A \cup B=\{a, d, e, I, o, u, v\}$ and $A \cup C=\{a, e, I, o, u, t, m\}$

$(A \cup B) \cap(A \cup C)=\{a, e, I, o, u\}$
L.H.S = R.H.S. [Verified]
73. L.H.S: $A \cup B=\{2,4,6,8,10,12,16\}$,
$(A \cup B) \cup C=\{2,4,6,8,10,12,16,18,24\}$

R.H.S: $B \cup C=\{4,6,8,10,12,16,18,24\}$

$A \cup(B \cup C)=\{2,4,6,8,10,12,16,18,24\}$

Hence proved.
Thus L.H.S = R.H.S. [Verified]
74. Here $U=\{1,2,3,4,5,6,7,8,9\}$
$A=\{2,4,6,8\}$ and $B=\{2,3,5,7\}$
$A \cap B=\{2,4,6,8\} \cap\{2,3,5,7\}$
$=\{2\}$
$(A \cap B)^{\prime}=U-(A \cap B)=\{1,2,3,4,5,6,7,8,9\}-\{2\}$
$=\{1,3,4,5,6,7,8,9\} \ldots$ (i)
$A^{\prime}=U-A=\{1,2,3,4,5,6,7,8,9\}-\{2,4,6,8\}$
$=\{1,3,5,7,8\}$
$B^{\prime}=U-B=\{1,2,3,4,5,6,7,8,9\}-\{2,3,5,7\}$
$=\{1,4,6,8,9\}$
$A^{\prime} \cup B^{\prime}=\{1,3,5,7,9\} \cup\{1,4,6,8,9\}$
$=\{1,3,4,5,6,7,8,9\} \ldots$ (ii)
From (i) and (ii) we have
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
75. Here $A \cup B=C$
$\therefore(A \cup B)-B=C-B$
$\Rightarrow(A \cup B) \cap B^{\prime}=C-B\left(\because A-B=A \cap B^{\prime}\right)$
$\Rightarrow\left(A \cap B^{\prime}\right) \cup\left(B \cap B^{\prime}\right)=C-B$
$\Rightarrow\left(A \cap B^{\prime}\right) \cup \phi=C-B$
$\Rightarrow\left(A \cap B^{\prime}\right)=C-B$
$\Rightarrow A-B=C-B$
$\Rightarrow A=C-B(\because A \cap B=\phi)$

