

Delhi Public School, Faridabad

Mid Semester Examination 2023-2024 CLASS: XII

Mathematics (Code-041)

7/7/23

Time Allowed :3 Hours

Maximum Marks: 80

^	the state of the s
General	Instructions:
<u></u>	msu accoms.

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark 2. each.
- Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each. 3.
- Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

SECTION A

(Multiple Choice Questions) Each question carries 1 mark

1. Let $A = \{2,3,4,5,...,17,18\}$. Let \simeq be the equivalence relation on $A \times A$, cartesian product of A with itself, defined by $(a,b) \simeq (c,d)$ iff ad = bc. Then, the number of ordered pairs of the equivalence class of (3,2) is (b) 5

2. Consider the set $A = \{1,2\}$. The relation on A which is symmetric but neither reflexive nor transitive is

(a) {(1,1), (2,2)} (b) {}

(c) $\{(1,2)\}$

(d) {(1,2), (2,1)}

3. Which of the following function from R to R is one-one function?

(a) $f(x) = e^x$ (b) $g(x) = e^{x^2}$

(c) $h(x) = \sin x$

(d) $\phi(x) = \cos x$

4. Let $f(x) = e^{\cos^{-1}\left(\sin\left(x + \frac{\pi}{3}\right)\right)}$. Then $f\left(\frac{8\pi}{9}\right) =$

 $(A) e^{5\pi/18}$ (b) $e^{13\pi/18}$

(d) none of these

5. I: If $\cos^{-1} x < \sin^{-1} x$, then $\frac{1}{\sqrt{2}} < x \le 1$

 $II: \tan^{-1} 1 > \tan 1$

III: The domain of $\cos^{-1}(x^2 - 4) + \cos x$ is $[\sqrt{3}, \sqrt{5}]$

(a) Only I is true (b) Only II is true (c) Only III is true (d) none of these

Value of $cos(cos^{-1}\pi) =$

(a) -1

(b) π

(c) 0

(d) none of these

$$3y = 2x$$
 $\frac{x}{y} = \frac{3}{2}$

18. In a sphere the rate of change of volume is

(a) π times the rate of change of radius

(b) surface area times the rate of change of diameter

(c) surface area times the rate of change of radius

ASSERTION-REASON BASED QUESTIONS

In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- 19. Assertion(A): The relation $f:\{1,2,3,4\} \rightarrow \{x,y,z,p\}$ defined by $f = \{(1,x),(2,y),(3,z)\}$ is a bijective function. Reason(R): The function $f:\{1,2,3\} \Rightarrow \{x,y,z,p\}$ such that $f=\{(1,x),(2,y),(3,z)\}$ is one-one.
- 20. Assertion(A): The rate of change of volume of sphere with respect to its radius is equal to S, surface area of the sphere.

Reason(R): The rate of change of volume of sphere with respect to its radius is $\frac{r}{2}$.

SECTION B

This section comprises of very short answer type-questions (VSA) of 2 marks each Let $A = \{a, b, c\}$ and the relation R be defined on A as $R = \{(a, a), (b, c), (a, b)\}$. 21, Then, write the minimum number of ordered pairs to be added in R to make Rreflexive and transitive.

Write the smallest and largest equivalence relations on the set $A = \{-1,0,1\}$

22:
$$\cot^{-1} x = \cos^{-1}(-1) - \csc^{-1}\left(\frac{2}{\sqrt{3}}\right)$$
.

Based on the above equation, find $\tan^{-1}\frac{1}{r}$ using principal values of the inverse trigonometric functions. Show your calculation.

23. If area of a triangle is 35 square units with vertices (2, -6), (5,4) and (k,4), find the value of k.

Express the matrix $\begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$ as the sum of a symmetric and a skew-symmetric

- 24 If $y^x = e^{y-x}$, prove that $\frac{dy}{dx} = \frac{(1+\log y)^2}{\log y}$
 - 25. The length x of a rectangle is decreasing at the rate of 3 cm/minute and the width yis increasing at the rate of 2 cm/minute. When x = 10cm and y = 6cm, find the rates of change of (a) perimeter and (b) the area of the rectangle.

1, 2 cm2/min

SECTION C

(This section comprises of short answer type questions (SA) of 3 marks each)

28. Let $f: X \to Y$ be a function. Define a relation R in X given by $R = \{(a, b): f(a) = f(b)\}$. Is this relation (i) reflexive? (ii) symmetric? (iii) transitive? Justify your answer.

27. Evaluate
$$\cos^{-1}\cos\frac{13}{6} + \tan^{-1}\tan\frac{7\pi}{6}$$
.

Yea, Yea, Yea

Prove that $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), x \in \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$

28. Examine the consistency of the system of equations 3x - y - 2z = 2, 2y - z = -1, 3x - 5y = 3

OR

Prove that a square matrix A is invertible if and only if A is non-singular matrix.

29. If
$$A = \begin{bmatrix} 3 & -1 \\ 4 & -2 \end{bmatrix}$$
, find x such that $A^2 = xA - 2I$. Hence find A^{-1} .

Let
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix}$. Find a matrix D such that $CD - AB = 0$.

30. If
$$x = a(\cos t + t \sin t)$$
 and $y = a(\sin t - t \cos t)$, find $\frac{d^2y}{dx^2}$.

SECTION D

(This section comprises of long answer-type questions (LA) of 5 marks each) 32. Let $A = R - \{3\}$ and $B = R - \{1\}$. Consider the function $f: A \to B$ defined by $f(x) = \frac{x-2}{x-3}$. Is f one-one and onto? Justify your answer.

$$0 \sqrt{33}. \quad \text{If } A = \begin{bmatrix} 2 & 3 & 1 \\ -3 & 2 & 1 \\ 5 & -4 & -2 \end{bmatrix}, \text{ find } A^{-1}. \text{ Use } A^{-1} \text{ to solve the system of equations}$$

$$2x - 3y + 5z = 11, 3x + 2y - 4z = 1, x + y - 2z = 3$$

2x - 3y + 5z = 11, 3x + 2y - 4z = 1, x + y - 2z = 334. Differentiate $(x \cos x)^x + (x \sin x)^{1/x}$ with respect to x.

0.1 cm³/sec. When the water is 6 cm deep, find at what rate is

- (i) the water level rising?
- (ii) the water-surface area increasing?
- (iii) the wetter surface of the vessel increasing?

SECTION E

(This section comprises of 3 case-study/passage-based questions of 4 marks each with two sub-parts. First two case study questions have three sub-parts (i),(ii),(iii) of marks 1, 1, 2 respectively. The third case study question has two sub-parts of 2 marks each.)

36. Raman wants to donate a rectangular plot of land for a school in his village. When he was asked to give dimensions of the plot, he told that if its length is decreased by 50 m and breadth is increased by 50 m, then its area does not alter, but if length is decreased by 10 m and breadth is decreased by 20 m, then its area will decrease by 5300 m^2 .

Based on the information given, answer the following questions:

- (i) Write the matrix equation representing the system of equations.
- (ii) Find the length of the rectangular plot, by solving the matrix equation.
- (iii) (a) Find the area of the rectangular plot.

- (iii) (b) Find the breadth of the rectangular plot
- 37. Let f(x) be a real valued function. Then its
 - Left Hand Derivative (L.H.D.): $Lf'(a) = \lim_{h \to 0} \frac{f(a-h)-f(a)}{-h}$
 - Right Hand Derivative (R.H.D.): $Rf'(a) = \lim_{h \to 0} \frac{f(a+h) f(a)}{h}$

Also, a function is said to be differentiable at x = a if its L.H.D. and R.H.D. at x = aexist and both are equal.

For the function $f(x) = \begin{cases} |x-3|, & x \ge 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & x < 1 \end{cases}$ answer the following questions:

- (i) What is R.H.D. of f(x) at x = 1
- (ii) What is L.H.D. of f(x) at x = 1?
- (iii) (a) Check if the function f(x) is differentiable at x = 1.

- (iii) (b) Find f'(2) and f'(1).
- 38. Read the following passage and answer the questions given below:

The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation $y = 4x - \frac{1}{2}x^2$, where x is the number of days exposed to the

sunlight, for $x \leq 3$.

- (i) Find the rate of growth of the plant with respect to the number of days exposed to 4-W the sunlight.
- (ii) What will be the height of the plant after

