CONTINUITY AND DIFFERENTIABILITY

Class 12 - Mathematics

1.	If $y = \tan^{-1} (\sec x + \tan x)$ then $\frac{dy}{dx} = ?$		[1]
	a) None of these	b) $\frac{1}{2}$	
	c) 1	d) $\frac{-1}{2}$	
2.	If $y = \sin^{-1}\left\{\frac{\sqrt{1+x} + \sqrt{1-x}}{2}\right\}$ then $\frac{dy}{dx} = ?$		[1]
	a) $\frac{1}{2\sqrt{1-x^2}}$	b) None of these	
	c) $\frac{1}{2(1+x^2)}$	d) $\frac{-1}{2\sqrt{1-x^2}}$	
3.	$f(x)= egin{cases} rac{\sqrt{1+px}-\sqrt{1-px}}{x} & -1\leq x<0\ rac{2x+1}{x-2} & ,0\leq x\leq 1 \end{cases}$ is continued	uous in the interval [-1, 1], then p is equal to	[1]
	a) 1	b) $\frac{1}{2}$	
	c) -1/2	d) -1	
4.	If $y = \sec^{-1}\left(\frac{1}{2x^2-1}\right)$ then $\frac{dy}{dx} = ?$		[1]
	a) $\frac{-2}{(1-x^2)}$	b) $\frac{-2}{\sqrt{1-x^2}}$	
	c) $\frac{-2}{(1+x^2)}$	d) None of these	
5.	If $y = \tan^{-1}\left(\frac{1+x^2}{1-x^2}\right)$ then $\frac{dy}{dx} = ?$		[1]
	a) $\frac{-2x}{(1+x^4)}$	b) None of these	
	C) $\frac{2x}{(1+x^4)}$	d) $\frac{x}{(1+x^4)}$	
6.	Derivative of sin ³ x w.r.t cos ³ x is		[1]
	a) cot x	b) – tan x	
	c) _{tan} ³ x	d) tan x	
7.	If $y = e^{1/x}$ then $\frac{dy}{dx} = ?$		[1]
	a) $\frac{-e^{1/x}}{x^2}$	b) $e^{1/x}\log x$	
	c) $\frac{1}{x} \cdot e^{(1/x-1)}$	d) None of these	
8.	If $y = x\sqrt{1-x^2} + \sin^{-1}x$, then $rac{dy}{dx}$ is equal to		[1]
	a) $\frac{1}{\sqrt{1-x^2}}$	b) $\sqrt{1-x^2}$	
	c) $2\sqrt{1-x^2}$	d) None of these	
9.	If $y = x^{x^{x+\infty}}$ then $rac{dy}{dx} = ?$		[1]
	a) None of these	b)	

c)
$$\frac{y^2}{x(1-y\log x)}$$

10. If $x = a \sec \theta$, $y = b \tan \theta$ then $\frac{dy}{dx} = ?$
a) $\frac{b}{a}\sec \theta$
c) $\frac{b}{a}\csc \theta$
d) $\frac{b}{a}\cot \theta$
 $\begin{cases} x^2a \quad , \quad 0 \le x < 1 \\ - \end{cases}$
[1]

11. The function
$$f(x) = \begin{cases} a & , \quad 1 \le x < \sqrt{2} \\ \frac{2b^2 - 4b}{x^2} & , \quad \sqrt{2} \le x < \infty \end{cases}$$
 is continuous for $0 \le x < \infty$, then the most suitable

values of a and b are

a)
$$a = -1$$
, $b = 1$
b) $a = -1$, $b = 1^+$

c)
$$a = -1$$
, $b = -1$ d) none of these

12. If
$$y = \sqrt{\sin x + y}$$
 then $\frac{dy}{dx}$ is equal to
a) $\frac{\cos x}{2y-1}$
b) $\frac{\sin x}{1-2y}$
c) $\frac{\cos x}{1-2y}$
d) $\frac{\sin x}{2y-1}$

13. If the function
$$f(x) = \begin{cases} \frac{\sin^2 ax}{x^2}, \text{ when } x \neq 0\\ k, \text{ when } x = 0 \end{cases}$$
 is continuous at $x = 0$ then $k = ?$
a) -4 b) a [1]

c) -2

14. If
$$f(x) = \begin{cases} \frac{1-\sin^2 x}{3\cos^2 x} & , \quad x < \frac{\pi}{2} \\ a & , \quad x = \frac{\pi}{2} \\ \frac{b(1-\sin x)}{(\pi-2x)^2} & , \quad x > \frac{\pi}{2} \end{cases}$$
 [1]

d) _a2

a)
$$a = \frac{1}{3}, b = 2$$
b) none of thesec) $a = \frac{2}{3}, b = \frac{8}{3}$ d) $a = \frac{1}{3}, b = \frac{8}{3}$

15. If
$$y = \cos^{-1} (4x^3 - 3x)$$
 then $\frac{dy}{dx} = ?$ [1]
a) $\frac{-3}{\sqrt{1-x^2}}$ b) $\frac{-4}{(3x^2-1)}$
c) $\frac{4}{\sqrt{1-x^2}}$ d) $\frac{3}{\sqrt{1-x^2}}$
16. If $x^y = y^x$ then $\frac{dy}{dx} = ?$ [1]

a)
$$\frac{y(y-x\log y)}{x(x-y\log x)}$$

c)
$$\frac{(y-x\log y)}{(x-y\log x)}$$

b) $\frac{y(y+x\log y)}{x(x+y\log x)}$

d) none of these

[1]

17. If
$$y = \sec^{-1}\left(\frac{x^2+1}{x^2-1}\right)$$
 then $\frac{dy}{dx} = ?$
a) $\frac{-1}{(1+x^2)}$
b) None of these
c) $\frac{2}{(1+x^2)}$
c) $\frac{-2}{(1+x^2)}$
c) $\frac{-2}{(1+x^2)}$

If the function $f(x) = \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}$ is continuous at each point of its domain, then the value of f(0) is 18. [1]

a)
$$\frac{1}{3}$$
 b) $\frac{2}{3}$
c) 2 d) $-\frac{1}{3}$

19. The values of the constants a, b and c for which the function f(x) =

$$= \left\{egin{array}{cccc} (1+ax)^{1/x} &, x < 0 & {f [1]} \ b &, x = 0 \ rac{(x+c)^{1/3}-1}{(x+1)^{1/2}-1} &, x > 0 \end{array}
ight.$$

continuous at
$$x = 0$$
, are

a)
$$a = \log_e\left(\frac{2}{3}\right), b = \frac{2}{3}, c = -1$$

c) $a = \log_e\left(\frac{2}{3}\right), b = -\frac{2}{3}, c = 1$

20. If $x^y = e^{x-y}$, then $\frac{dy}{dx}$ is

(a)
$$\frac{1}{1+\log x}$$

(c) $\frac{\log x}{(1+\log x)^2}$

21. If $x = a \cos^2 \theta$, $y = b \sin^2 \theta$ then $\frac{dy}{dx} = ?$

a)
$$\frac{a}{b} \cot \theta$$

c) $\frac{-a}{b}$

22. The function $f(x) = e^{-|x|}$ is

a) continuous everywhere but notdifferentiable at x = 0

c) none of these

23. If
$$y = \tan^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}$$
 then $\frac{dy}{dx} = ?$
a) $\frac{1}{2}$
b) None of these
c) $\frac{-1}{2}$
d) $\frac{1}{(1+x^2)}$

24. The function $f(x) = |\cos x|$ is

a) everywhere continuous but not b) everywhere continuous and differentiable differentiable at
$$(2n + 1) \frac{\pi}{2}$$
, $n \in Z$

d) none of these

b) none of these

d) $_{-n^2y}$

c) neither continuous nor differentiable at (2n + 1) $rac{\pi}{2}$, n \in Z

25. If $y^{1/n} + y^{-1/n} = 2x$, then $(x^2 - 1) y_2 + xy_1 =$

a) 0

26. The function
$$f(x) = \begin{cases} \frac{\sin x}{x} + \cos x, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$$
 is continuous at x = 0, then the value of k is

a) 1 b) 3

(1)

c) 1.5 d) 2

27. If $y = ae^{mx} + be^{-mx}$, then y_2 is equal to

1+r

b) none of these

d) $a = \log_e(\frac{2}{3}), b = \frac{2}{3}, c = 1$

b)
$$\frac{1+x}{1+\log x}$$

d) not defined

[1]

[1]

[1]

[1]

[1]

b) None of these

d)
$$\frac{-b}{a}$$
 [1]

d) not continuous at
$$x = 0$$

[1]

	a) my ₁	b) _m²y	
	c) _{m²y}	d) None of these	
28.	Derivative of log x w.r.t. x is		[1]
	a) None of these	b) $\frac{1}{x}$	
	c) $\pm \frac{1}{x}$	d) $\frac{1}{ x }$	
29.	The function $f(x) = \sin^{-1}(\cos x)$ is		[1]
	a) None of these	b) differentiable at $x = 0$	
	c) discontinuous at $x = 0$	d) continuous at $x = 0$	
30.	It y = tan ⁻¹ $\left(\frac{\sqrt{a}+\sqrt{x}}{1-\sqrt{ax}}\right)$ then $\frac{dy}{dx} = ?$		[1]
	a) $\frac{2}{\sqrt{x}(1+x)}$	b) $\frac{1}{(1+x)}$	
	c) $\frac{1}{2\sqrt{x}(1+x)}$	d) $\frac{1}{\sqrt{x}(1+x)}$	
31.	If x = a $\cos^3 heta$, y = a $\sin^3 heta$, then $\sqrt{1 + \left(rac{dy}{dx} ight)^2} =$		[1]
	a) sec θ	b) $tan^2 \theta$	
	c) $sec^2\theta$	d) sec θ	
32.	$ ext{If } f(x) = egin{cases} mx+1, & ext{if } x \leq rac{\pi}{2} \ \sin x + n, & ext{if } x > rac{\pi}{2} \end{cases}$ is continuous at	$x=rac{\pi}{2}$ then	[1]
	a) $m=n=rac{\pi}{2}$	b) $n=rac{m\pi}{2}$	
	c) m = 1, n = 0	d) $m=rac{n\pi}{2}+1$	
33.	The function $f(x) = [x]$, where $[x]$ denotes the greatest integer function, is continuous at		[1]
	a) -2	b) 1.5	
	c) 1	d) 4	
34.	Let $f(x) = x $ and $g(x) = x^3 $, then		[1]
	a) $f(x)$ and $g(x)$ both are differentiable at $x = 0$	b) $f(x)$ is differentiable but $g(x)$ is not differentiable at $x = 0$	
	c) $f(x)$ and $g(x)$ both are continuous at $x = 0$	d) $f(x)$ and $g(x)$ both are not differentiable at $x = 0$	
35.	If $y = x^{n-1} \log x$ then $x^2 y_2 + (3 - 2n) xy_1$ is equal to		[1]
	a) - $(n - 1)^2 y$	b) $(n - 1)^2 y$	
	c) _{-n²y}	d) n ² y	
36.	If $y = e^{tanx}$, then $(\cos^2 x) y_2 =$		[1]
	a) (1 + sin 2x) y ₁	b) none of these	
	c) (1 - sin 2x) y ₁	d) -(1 + sin 2x) y ₁	

37.
$$\frac{d}{dx} \left\{ \tan^{-1} \left(\frac{dxx}{1+\tan x} \right) \right\} \text{ equal}$$
(1)
a) -1
() -1/2
(1) 1 (1) is equal to
(1)
a) None of these
(1) $\frac{1}{2} - \frac{x}{4}$
(1) $\frac{x}{4} - \frac{1}{2}$
(2) $\frac{x}{4} - \frac{1}{2}$
(3) If $y = \tan^{-1} \left\{ \frac{\log \left(x/x^2 \right)}{\log \left(x^2 \right)} \right\} - \tan^{-1} \left(\frac{3-2\log x}{1-\log x} \right), \text{ then } \frac{d^2y}{dx^2} = 1$
(3)
(1) $\frac{1}{2} - \frac{x}{4}$
(3) $\frac{1}{2} - \frac{x}{4}$
(4) $\frac{1}{2} - \frac{x}{4}$
(5) $\frac{x}{4} - \frac{1}{2}$
(7) $\frac{x}{4} - \frac{1}{2}$
(8) $\frac{x}{4} - \frac{1}{2}$
(9) $\frac{x}{4} + \frac{1}{2}$
(9) $\frac{1}{(1-x^2)^{1/2}}$
(9) $\frac{1}{(1-x^2)^{1/2}}}$
(9) $\frac{1}{(1-x^2)^{1/2}}$
(9) $\frac{1}{(1-x^2)^{1/2}}}$
(9) $\frac{1}{(1-x^2)^{1/2}}$
(9) $\frac{1}{(1-x^2)^{1/2}}}$
(9) $\frac{1}{(1-x^$

46. If the function
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{8x^2}, & x \neq 0\\ k, x = 0 \end{cases}$$
 is continuous $x = 0$ then $k = ?$

a)
$$\frac{-1}{2}$$
 b) $\frac{1}{2}$
c) 2 d) 1
47. If $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$, then f(x) is [11]
a) none of these b) continuous on [-1, 1] and differentiable on (-1, 1)
c) continuous on [-1, 1] and differentiable on d) continuous and differentiable on (-1, 1)
c) continuous on [-1, 1] and differentiable on d) continuous and differentiable on (-1, 1)
c) continuous and differentiable for all x in (x) f(x) is continuous and differentiable on x = ±1
c) none of these d) f(x) is continuous for all x in its domain but in its domain but in its domain on the differentiable at $x = \pm 1$
c) none of these d) f(x) is neither continuous nor differentiable at $x = \pm 1$
c) none of these d) f(x) is neither continuous nor differentiable at $x = \pm 1$
d) f(x) is continuous and ultiferentiable for all x in (x) f(x) is equal to 0
c) is equal to non -zero real number d) None of these
50. $\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$ where [1]
a) $-1 \leqslant x \leqslant 1$ b) $-1 < x \leqslant 1$
51. If $y = \log\left(\frac{\sqrt{1-x^2}x}{\sqrt{1-x^2}}\right)$ then $\frac{dy}{dx} = 2$
c) none of these d) $\frac{1}{\sqrt{1-x^2}}$ is continuous at every point of [1]
its domain, is
a) $\frac{1}{3}$ b) -1
c) 1 d) 0
53. If $y = \frac{x^{2+1}}{x^{2-1}}$, then $(2x_1 + y)y_2 = (1)$
a) $3(x_2 + y_1)y_2$ b) $3(x_2 + y_1)y_2$
c) none of these d) $3(x_1 + x_2 + x_2 + x_2 + x_$

a) neither differentiable nor continuous at x = 3 b) continuous but not differentiable at x = 3

	c) differentiable but not continuous at $x = 3$	d) continuous and differentiable at $x = 3$	
56.	If $y = (\tan x)^{\cot x}$ then $\frac{dy}{dx} = ?$		[1]
	a) -(tan x) ^{cot x} . cosec ² x	b) $(\tan x)^{\cot x} \cdot \csc^2 x (1 - \log \tan x)$	
	c) $\cot x \cdot (\tan x)^{\cot x - 1} \cdot \sec^2 x$	d) None of these	
57.	If y = sin ⁻¹ (3x - 4x ³) then $\frac{dy}{dx} = ?$		[1]
	a) $\frac{3}{\sqrt{1-x^2}}$	b) $\frac{-4}{\sqrt{1-x^2}}$	
	c) None of these	d) $\frac{3}{\sqrt{1+x^2}}$	
58.	If $x = a(\cos \theta + \theta \sin \theta)$ and $y = a(\sin \theta - \theta \cos \theta)$	$\mathbf{v} = \mathbf{v}$	[1]
	a) a cot $ heta$	b) cot $ heta$	
	c) tan $ heta$	d) a tan $ heta$	
59.	If $y = \tan^{-1}\left\{\frac{\sqrt{1+x^2}-1}{x}\right\}$ then $\frac{dy}{dx} = ?$		[1]
	a) $\frac{2}{(1+x^2)}$	b) $\frac{1}{(1+x^2)}$	
	c) $\frac{1}{2(1+x^2)}$	d) None of these	
60.	Let $f(x) = (x + x) x $. Then, for all x		[1]
	a) f is differentiable for some x	b) f" is continuous	
	c) f' is continuous	d) f is continuous	
61.	If $y = x^{\sqrt{x}}$ then $\frac{dy}{dx} = ?$		[1]
	a) None of these	b) $\sqrt{x} \cdot x^{(\sqrt{x}-1)}$	
	c) $x^{\sqrt{x}}\left\{rac{2+\log x}{2\sqrt{x}} ight\}$	d) $\frac{x^{\sqrt{x}}\log x}{2\sqrt{x}}$	
62.	$rac{d}{dx}(an^{-1}(\cot x))$ is equal to		[1]
	a) None of these	b) – 1	
	c) _{sin²x}	d) $-\cos^2 x$	
63.	The value of k for which $f(x) = \begin{cases} \frac{3x + 4\tan x}{2}, \text{ where} \\ k, \text{ where} \end{cases}$	$x = x \neq 0$ is continuous at x = 0, is	[1]
	($k,$ wh	x = 0	
	a) 3	b) 7	
	c) None of these	d) 4	
64.	If $x = a \cos nt - b \sin nt$, then $\frac{d^2x}{dt^2}$ is		[1]
	a) $_{-n}^{2}x$	b) _{n²x}	
	c) -nx	d) nx	
65.	If $x = at^2$, $y = 2$ at, then $\frac{d^2y}{dx^2} =$		[1]
	a) None of these	b) 0	
	c) $\frac{1}{t^2}$	$d) - \frac{1}{2a t^3}$	

66.	If $y = x^x$ then $\frac{dy}{dx} = ?$		[1]
66.	ueu .		[-]
	a) $x(1 + \log x)$	b) None of these	
	c) $x^{x} (1 + \log x)$	d) $x^x \log x$	[1]
67.	$\mathop{Lt}\limits_{x ightarrow\infty} \left(1+rac{3}{x} ight)^x$ is equal to		[1]
	a) 3 e	b) None of these	
	c) _e ³	d) $e^{1/3}$	
68.	If $y = \cos^{-1}\left(\frac{x^2-1}{x^2+1}\right)$ then $\frac{dy}{dx} = ?$		[1]
	a) None of these	b) $\frac{-2}{(1+x^2)}$	
	c) $\frac{2}{(1+x^2)}$	d) $\frac{2x}{(1+x^2)}$	
69.	If the function $f(x) = \begin{cases} rac{k\cos x}{(\pi - 2x)}, & ext{when } x \neq rac{\pi}{2} \\ 3, & ext{when } x = rac{\pi}{2} \end{cases}$ be consistent of the function of the functi	ontinuous at $x = \frac{\pi}{2}$, then the value of k is	[1]
	a) 6	b) 3	
	c) -3	d) -5	
70.	If $e^{x + y} = xy$ then $\frac{dy}{dx} = ?$		[1]
	a) $\frac{(x-xy)}{(xy-y)}$	b) none of these	
	c) $\frac{y(1-x)}{x(y-1)}$	d) $\frac{x(1-y)}{u(x-1)}$	
71.	If $y = 2^x$ then $\frac{dy}{dx} = ?$	g(x + 1)	[1]
	a) 2^{x} (log 2)	b) None of these	
	c) $\frac{2^x}{(\log 2)}$	d) $x(2^{x-1})$	
72.	(8-)		[1]
/ 2.		then f(x) will be continuous function at $x = \frac{\pi}{2}$, where λ =	[1]
	a) 1/4	b) none of these	
	c) $1/2$	d) 1/8	641
73.	If $y = \log \sqrt{\tan x}$, then the value of $rac{dy}{dx}$ at $x = rac{\pi}{4}$ is given by		[1]
	a) 0	b) ∞	
	c) $\frac{1}{2}$	d) 1	641
74.	$ ext{If } f(x) = egin{cases} rac{\sin(\cos x) - \cos x}{(\pi - 2x)^2} &, x eq rac{\pi}{2} \ k &, x = rac{\pi}{2} \end{cases}$ is continuous	s at $x=rac{\pi}{2}$, then k is equal to	[1]
	a) 1	b) -1	
	c) 0	d) $\frac{1}{2}$	
75.	If $y = ax^2 + bx + c$, then $y^3 \frac{d^2y}{dx^2}$ is		[1]
	a) a constant	b) a function of x only	
	c) a function of y only	d) a function of x and y	