APPLICATIONS OF DERIVATIVES MCQS

Class 12 - Mathematics

1.

Explanation: $-1 \le k \le 1$

2.

(d)
$$e^{1/e}$$

Explanation: Let
$$y = f(x) = \frac{1}{x}^x$$

Then, $\log y = \log \frac{1}{x}^x = x \log \frac{1}{x} = -x \log x$

$$\Rightarrow \frac{1}{y} \frac{dy}{dx} = -\left(x \cdot \frac{1}{x} + \log x \cdot 1\right) = -\left(1 + \log x\right)$$

$$\Rightarrow f'(x) = -\frac{1}{x}^x \left(1 + \log x\right)$$

$$f'(x) = 0 \Rightarrow \left(1 + \log x\right) = 0$$

$$\Rightarrow \log x = -1 \Rightarrow x = \frac{1}{e}$$
The maximum value of $f(x) = f\left(\frac{1}{e}\right) = e^{1/e}$

3. **(a)** $\frac{1}{2}$

Explanation: Let, the numbers whose sum is 8 are 8, 8 - x.

Given
$$f(x) = \frac{1}{x} + \frac{1}{8-x}$$

 $\Rightarrow f'(x) = \frac{-1}{x^2} + \frac{1}{(8-x)^2}$

to find minima or maxima

$$f'(x) = 0$$

$$\Rightarrow \frac{-1}{x^2} + \frac{1}{(8-x)^2} = 0$$

$$\Rightarrow x = 4$$

$$f''(x) = \frac{2}{x^3} - \frac{2}{(8-x)^3}$$

$$\Rightarrow f''(4) = \frac{2}{4^3} - \frac{2}{(8-4)^3} = 0$$

Minimum value of the sum of their reciprocals = $\frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

4. **(a)** 0

Explanation: we have, $f(x) = \sin x$, then, $f'(x) = \cos x$

For stationary points, we must have $f'(x)=0 \Rightarrow \cos x=0 \Rightarrow x=\frac{3\pi}{2}[\because x \in [\pi,2\pi]]$

Now ,f(
$$\pi$$
)=sin π =0, f($\frac{3\pi}{2}$)=sin $\frac{3\pi}{2}$ =-1 and f(2π)=sin 2π =0

Hence, the maximum value of f(x) is 0.

5.

(c)
$$a \le -\frac{1}{2}$$

Explanation: $a \leq -\frac{1}{2}$

6.

(b)
$$0 < x < 1$$

Explanation: 0 < x < 1

7. **(a)** $e^{\frac{-1}{e}}$

Explanation: Here, it is given the function $f(x) = x^x$

$$\Rightarrow$$
 Keeping f'(x)= $x^x(1 + logx) = 0$

We get

$$\Rightarrow$$
 x = 0 or $x = \frac{1}{e}$

$$\Rightarrow$$
 f''(x) = $x^x(1 + logx + \frac{1}{x})$

When x is greater than zero. Then $f''(x) \leq 0$

We get a maximum value as the function will be negative

Thus,

$$f(x) = x^{x}$$

$$f(e) = \left(\frac{1}{e}\right)^{1/e} = e^{-\frac{1}{e}}$$

8.

(c)
$$\lambda > 1/2$$

Explanation: $\lambda > 1/2$

9.

Explanation: Here ,it is given the function $f(x) = e^x + e^{-x}$

$$\Rightarrow f(x) = e^x + rac{1}{e^x}$$

 $\Rightarrow f(x) = rac{e^{2x} + 1}{e^x}$

f(x) is always increasing at x = 0 it has the least value

$$\Rightarrow f(x) = \frac{1+1}{1} = 2$$

... The least value is 2

10.

(b)
$$\left(0, \frac{3}{2}\right) \cup (3, \infty)$$

Explanation: Given, $f(x) = [x(x - 3)]^2$

$$\Rightarrow$$
 f'(x) = 2 [x(x - 3)] = 0|

$$\Rightarrow$$
 x = 3 and $x = \frac{3}{2}$

 \Rightarrow x = 3 and $x = \frac{3}{2}$ When x > $\frac{3}{2}$ the function in increasing

 $X \le 3$ function is increasing

$$\Rightarrow \left(0,rac{3}{2}
ight) \cup (3,\infty)$$
 Function is increasing

11.

(b)
$$ab \geq \frac{c^2}{4}$$

Explanation: $f(x) = ax + \frac{b}{x}$ $\Rightarrow f'(x) = a - \frac{b}{x^2}$

$$\Rightarrow$$
 f'(x) = a - $\frac{b}{r^2}$

$$f'(x) = 0$$

$$a - \frac{b}{x^2} = 0$$

$$\Rightarrow$$
 x = $\pm \sqrt{\frac{b}{a}}$

$$f''(x) = \frac{2b}{x^3}$$

$$\Rightarrow x = \pm \sqrt{\frac{b}{a}}$$

$$f''(x) = \frac{2b}{x^3}$$

$$f''(\sqrt{\frac{b}{a}}) = \frac{2b}{(\sqrt{\frac{b}{a}})^3} > 0$$

$$\Rightarrow$$
 x = $\sqrt{\frac{b}{a}}$ has a minima.

$$f(\sqrt{rac{b}{a}})$$
 = $2\sqrt{ab} \geq c$

$$\frac{c}{2} \leq \sqrt{ab}$$

$$\Rightarrow \frac{c^2}{4} \le ab$$

12.

(b)
$$\frac{1}{2}$$

Explanation: Let $f(x) = \sin x \cdot \cos x$

$$\Rightarrow f(x) = rac{1}{2}(sin2x)$$

Now,
$$f'(x) = \frac{1}{2}(\cos 2x) \cdot 2 = \cos 2x$$

For maximum and minimum values of x, we have f'(x) = 0

$$f'(x) = 0 \Rightarrow cos2x = 0$$

$$\Rightarrow x = \frac{\pi}{4}$$

Now,
$$f''(x) = -2\sin 2x$$

i.e,
$$f''(\frac{\pi}{4}) = -2\sin\frac{\pi}{2} = -2 < 0$$

Hence, f(x) has a maximum value at $x = \frac{\pi}{4}$ and the max value of $f(\frac{\pi}{4}) = \sin \frac{\pi}{4} \cos \frac{\pi}{4} = \frac{1}{2}$.

13.

Explanation: Given function,

$$f(x) = 3x^4 - 8x^3 - 48x + 25$$

$$F'(x) = 12x^3 - 24x^2 - 48 = 0$$

$$F'(x) = 12(x^3 - 2x^2 - 4) = 0$$

Differentiating again, we obtain

$$F''(x) = 3x^2 - 4x = 0$$

$$x(3x - 4) = 0$$

$$x = 0 \text{ or } x = \frac{4}{3}$$

Putting the value in equation, we obtain

$$f(x) = -39$$

14.

(d) neither maximum nor minimum

Explanation: We have, $f(x) = 2 \sin 3x + 3 \cos 3x$

$$\therefore f'(x) = 6 \cos 3x - 9 \sin 3x$$

$$\therefore f'\left(\frac{5\pi}{6}\right) = 6\cos\left(3 \cdot \frac{5\pi}{6}\right) - 9\sin\left(3 \cdot \frac{5\pi}{6}\right)$$
$$= 6\cos\frac{5\pi}{2} - 9\sin\frac{5\pi}{2} = 0 - 9 \neq 0$$

So, $x = \frac{5\pi}{6}$ cannot be point of maxima or minima

15.

(b)
$$-\infty$$
 , ∞

Explanation: $(-\infty, \infty)$

$$f(x) = \cot^{-1} x + x$$

$$f'(x) = \frac{-1}{x} + 1$$

$$=\frac{-1+1+x^2}{}$$

$$f(x) = \cot^{-1} x + x$$
 $f'(x) = \frac{-1}{1+x^2} + 1$
 $= \frac{-1+1+x^2}{1+x^2}$
 $= \frac{x^2}{1+x^2} \ge 0, \forall x \in R$

So, f (x) is increasing on $(-\infty, \infty)$

16.

(b)
$$0 < X < 2$$

Explanation: $0 \le X \le 2$

$$f(x) = x^2 e^{-x}$$

$$f'(x) = 2xe^{-x} - x^2e^{-x}$$

$$= e^{-x}(2 - x)$$

For f(x) to be monotonic increasing, we must have

$$\Rightarrow e^{-x}x(2-x) > 0 [\because e^{-x} > 0]$$

$$\Rightarrow$$
 x(2 - x) > 0

$$\Rightarrow$$
 x(x - 2) < 0

$$\Rightarrow 0 < x < 2$$

17.

(c)
$$\frac{4}{27}$$

Explanation: Here, it is given function $ff(x) = (x - 2)(x - 3)^2$

$$f(x) = (x - 2)(x^2 - 6x + 9)$$

$$f(x) = x^3 - 8x^2 + 21x + 18$$

$$f'(x) = 3x^2 - 16x + 21$$

$$f''(x) = 6x - 16$$

For maximum or minimum value f'(x) = 0

$$3x^2 - 9x - 7x + 21 = 0$$

$$\Rightarrow$$
 3x(x - 3) - 7(x - 3) = 0

$$\Rightarrow$$
 x = 3 or x = $\frac{7}{3}$

$$f''(c)$$
 at $x = 3$

$$f''(x) = 2$$

f''(x) > 0 it is decreasing and has minimum value at x = 3

at
$$x = \frac{7}{3}$$

$$f''(x) = -2$$

f''(x) < 0 it is increasing and has maximum value at $x = \frac{7}{3}$

Putting, $x = \frac{7}{3}$ in f(x) we obtain,

$$\Rightarrow \left(\frac{7}{3} - 2\right) \left(\frac{7}{3} - 3\right)^{2}$$

$$= \left(\frac{1}{3}\right) \left(\frac{-2}{3}\right)^{2}$$

$$= \frac{4}{27}$$

18.

(b) only one minima

Explanation: Given,
$$f(x) = |x| = {-x, \quad x < 0 \over x, x > 0}$$

$$\Rightarrow f'(x) = -1$$
 when x < 0 and 1 when x > 0

But, we have f'(x) does not exist at x = 0, hence we have x = 0 is a critical point

At
$$x = 0$$
, we get $f(0) = 0$

For any other value of x, we have f(x) > 0, hence f(x) has a minimum at x = 0.

19. **(a)**
$$a = 2$$
, $b = -\frac{1}{2}$

Explanation: Let
$$f(x) = alog x + b x^2 + x$$

$$f'(x) = a. \frac{1}{x} + 2bx + 1$$

For maximum and minimum value of f(x) we have f'(x) = 0

Therefore, at
$$x = -1$$
 and $x = 2$ we have $2bx^2 + x + a = 0$

i.e,
$$a + 2b = 1....(i)$$
 and $a + 8b = 2....(ii)$

(ii) - (i) gives b =
$$-\frac{1}{2}$$

Now, from (i) we get
$$a = 2$$

$$\Rightarrow$$
 a = 2, b = $-\frac{1}{2}$

20. **(a)**
$$x \in R$$

Explanation:
$$x \in R$$

21.

(d) R

Explanation: R

22.

(d) 0

Explanation: Let
$$f(x) = x^3 - 18x^2 + 96x$$

$$\Rightarrow$$
 f'(x) = 3x² - 36x + 96 = 3[x² - 12x +32] = 3(x - 4)(x - 8)

For maximum and minimum values of x, we have f'(x) = 0

$$\Rightarrow$$
 3(x - 4)(x - 8) \Rightarrow x = 4, 8

Both of these values lies in the given interval [0,9]

Now,
$$f''(x) = 6x - 36$$

When
$$x = 8$$
 we get $f''(x) = 12 > 0$

Since at
$$x = 8$$
, $f'(x) = 0$ and $f''(x) > 0$, we get $f(x)$ is minimum at $x = 8$ in $(0,9)$

Now, we have to find minimum values at the end points of the given interval

We have,
$$f(0) = 0$$
 and $f(9) = 135$

Hence, the minimum value of f(x) = 0 at x = 0 in [0,9]

23. **(a)**
$$a > 0$$

Explanation:
$$f(x) = ax$$

$$f'(x) = a$$

f(x) is increasing on $\frac{1}{2}$ if a > 0

24.

(d)
$$\frac{\pi}{2}$$

Explanation: $f(x) = x + \cos x$

$$f'(x) = 1 - \sin x$$

For maximum and minimum values of f(x), we have f'(x) = 0

Now, f'(x) =
$$0 \Rightarrow 1$$
- $sinx = 0 \Rightarrow x = \frac{\pi}{2}$

Hence, maximum value of f(x) is $f(\frac{\pi}{2}) = \frac{\pi}{2}$

25. (a) cos x

Explanation: $f_1(x) = \sin^2 x$, increases from '0' to '1' in $\left(0, \frac{\pi}{2}\right)$

 $f_2(x) = \tan x$ is increasing function in each quadrant

$$f_3(x) = \cos x$$
, decreases from '1' to '0' in $\left(0, \frac{\pi}{2}\right)$

$$\mathrm{f}_4(\mathrm{x})$$
 = cos 3x, decreases if $3x \in \left(0, \frac{\pi}{2}\right)$ or $x \in \left(0, \frac{\pi}{6}\right)$

26.

(d)
$$\frac{1}{e}$$

Explanation: Consider
$$f(x) = \frac{logx}{x}$$

Then, $f'(x) == \frac{x \cdot \frac{1}{x} - logx \cdot 1}{x^2} = \frac{1 - logx}{x^2}$

For maximum or minimum values of x we have f'(x) = 0

$$f'(x) = 0 \Rightarrow (1 - \log x) = 0$$

$$\Rightarrow$$
 logx = 1 \Rightarrow x = e.

Now, f'(x) =
$$\frac{x^2 \cdot \frac{-1}{x} - (1 - logx)2x}{x^4} = \left[\frac{-3 + 2logx}{x^3}\right]$$

f"(x) at
$$at$$
 $x=e=rac{-3}{e^3}<0$

Therefore f(x) is maximum at x = e and the max. value $= \frac{loge}{e} = \frac{1}{e}$

27.

(c) Decreasing on R

Explanation: Given, $f'(x) = -x^3 + 3x^2 - 3x + 4$

$$f'(x) = -3x^2 + 6x - 3$$

$$f'(x) = -3(x^2 - 2x + 1)$$

$$f'(x) = -3(x - 1)^2$$

As f'(x) has -ve sign before 3

 \Rightarrow f'(x) is decreasing over R.

28.

(d) 126

Explanation: Marginal revenue (MR) is the rate of change of total revenue with respect to the number of units sold.

So, MR =
$$\frac{dR}{dx}$$
 = 6x + 36 = 6x + 36

$$\therefore$$
 when x = 15, then

$$MR = 6(15) + 36 = 126$$

Therefore, the marginal revenue when x = 15 is 126.

29.

(d) 75

Explanation:
$$f(x) = x^2 + \frac{250}{x}$$

 $\Rightarrow f'(x) = 2x - \frac{250}{x^2}$

$$\Rightarrow$$
 f'(x) = 2x - $\frac{250}{x^2}$

For the local minima or maxima we must have

$$f'(x) = 0$$

$$2x - \frac{250}{x^2} = 0$$

$$\Rightarrow$$
 x = 5

$$f''(x) = 2 + \frac{500}{x^3}$$

$$f''(x) = 2 + \frac{500}{x^3}$$
$$f''(5) = 2 + \frac{500}{125} > 0$$

function has minima at x = 5

$$f(5) = 75$$

30.

(d) 1

Explanation: Given $f(x) = x^2 - 8x + 17$

$$\Rightarrow$$
 f'(x) = 2x - 8

For minimum valye of f(x) we have f'(x) = 0

$$\Rightarrow 2x - 8 = 0 \Rightarrow x = \frac{8}{2} = 4$$

Now, f''(x) = 2 > 0, hence the minimum of f(x) exist at x = 4 and minimum value = f(4) = 1

31.

(b) -1

Explanation: $f(x) = 2x^3 - 3x^2 - 12x + 5$

$$\Rightarrow$$
 f'(x) = 6x² - 6x - 12

For local maxima or minima we have

$$f'(x) = 0$$

$$6x^2 - 6x - 12 = 0$$

$$\Rightarrow$$
 x² - x - 2 = 0

$$\Rightarrow$$
 x = 2 or x = -1

$$f''(x) = 12x - 6$$

$$f''(2) = 18 > 0$$

function has local minima at x = 2.

$$f''(-1) = -18 < 0$$

function has local maxima at x = -1.

(a) local minima at x = 132.

Explanation: Given, $f(x) = x^3 - 3x$

$$f'(x) = 3x^2 - 3$$

For point of inflexion we have f'(x) = 0

$$f'(x)=0\Rightarrow 3x^2-3=0=3\left(x-1
ight)\left(x+1
ight)\Rightarrow x=\pm 1$$

Hence, f(x) has a point of inflexion at x = 0.

When , x is slightly less than 1, f'(x) = (+)(-)(+) i.e, negative

When x is slightly greater than 1, f'(x) = (+)(+)(+) i.e, positive

Hence, f'(x) changes its sign from negative to positive as x increases through 1 and hence x = 1 is a point of local minimum.

33. **(a)** 2

Explanation: $f(x) = 2x^3 - 15x^2 + 36x + 4$

$$\Rightarrow$$
 f'(x) = 6x² - 30x + 36

for local minima or maxima

$$f'(x) = 0$$

$$6x^2 - 30x + 36 = 0$$

$$x^2 - 5x + 6 = 0$$

$$\Rightarrow$$
 x = 2 or x = 3

$$f''(x) = 12x - 30$$

$$f''(2) = -6 < 0$$

x = 2 has maxima.

$$f''(3) = 6 > 0$$

x = 3 has minima.

(c) increasing

Explanation: increasing

35. **(a)** k > 3

Explanation: $f(x) = kx^3 - 9x^2 + 9x + 3$

$$f'(x) = 3kx^2 - 18x + 9$$

$$=3(kx^2-6x+3)$$

Given: f(x) is monotonically increasing in every interval.

$$\Rightarrow$$
 f'(x) > 0

$$\Rightarrow 3(kx^2 - 6x + 3) > 0$$

$$\Rightarrow$$
 (kx² - 6x = 3) > 0

$$\Rightarrow$$
 K > 0 and (-6)² - 4(k)(3) < 0 [: ax² + bx + c > 0 and D is c < 0]

$$\Rightarrow$$
 k > 0 and (-6)² - 4(k) (3) < 0

$$\Rightarrow$$
 k > 0 and 36 - 12k < 0

$$\Rightarrow$$
 k > 0 and 12k > 36

$$\Rightarrow$$
 k > 0 and k > 3

$$\Rightarrow$$
 k > 3

36. **(a)** point of inflexion at x = 0

Explanation: Given $f(x) = x^3$

$$f'(x) = 3x^2$$

For point of inflexion, we have f'(x) = 0

$$f'(x) = 0 \Rightarrow 3x^2 = 0 \Rightarrow x = 0$$

Hence, f(x) has a point of inflexion at x = 0.

But x = 0 is not a local extremum as we cannot find an interval I around x = 0 such that

$$f(0) \geq f(x) \quad or \quad f(0) \leq f(x) \qquad for \quad all \quad x \epsilon I$$

37. **(a)** $a = \frac{1}{2}$

Explanation: $a = \frac{1}{2}$

38. **(a)** -128

Explanation: $f(x) = 2x^3 - 21x^2 + 36x - 20$

$$\Rightarrow$$
 f'(x) = 6x² - 42x + 36

For local maxima or minima

$$6x^2 - 42x + 36 = 0$$

$$x^2 - 7x + 6 = 0$$

$$\Rightarrow$$
 x = 1 or x = 6

$$f''(x) = 12x - 42$$

$$\Rightarrow$$
 f"(1) = -30 < 0

also,
$$f''(6) = 30 > 0$$

function has minima at x = 6

$$\Rightarrow$$
 f(6) = -128

39. **(a)** $(1, \infty)$

Explanation: Given, function

$$\Rightarrow$$
 f(x) = (x + 1)³. (x - 3)³

$$\Rightarrow$$
 f'(x) = 3(x + 1)² (x - 3)³ + 3(x - 3)³ (x + 1)³

Put
$$f'(x) = 0$$

$$\Rightarrow$$
 3(x + 1)² (x - 3)³ = -3(x - 3)² (x + 1)³

$$\Rightarrow$$
 x - 3 = -(x + 1)

$$\Rightarrow$$
 2x = 2

$$\Rightarrow$$
 x = 1

When x > 1 the function is increasing

x < 1 function is decreasing

Therefore f(x) is increasing in $(1, \infty)$.

40. **(a)**
$$x = \frac{-\pi}{2}$$

Explanation: We can go through options for this question

Option a is wrong because 0 is not included in $(-\pi, 0)$

At
$$x = \frac{-\pi}{4}$$
 value of f(x) is $-\sqrt{2}$ = -1.41

At
$$x = \frac{-\pi}{2}$$
 value of f(x) is -2

At
$$x = \frac{\pi}{3}$$
 value of f(x) is -2.
At $x = \frac{\pi}{2}$ value of f(x) = -1.

$$\therefore$$
 f(x) has max value at $x = \frac{-\pi}{2}$

Which is -1. This is the required solution.

41.

(d) monotonically decreasing

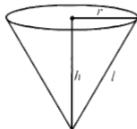
Explanation: monotonically decreasing

42.

(b) $54\pi {\rm cm}^2/{\rm min}$

Explanation:

Let r be the radius, h be the height and S be the lateral surface area of the cone at any time t.



Given:
$$\frac{dr}{dt} = 3$$
cm/min and $\frac{dh}{dt} = -4cm/\min$

Here,

$$l^2 = h^2 + r^2$$

 $\Rightarrow l = \sqrt{(24)^2 + (7)^2}$

$$\Rightarrow l = \sqrt{625}$$

$$\Rightarrow$$
 1 = 25

$$S = \pi r l$$

$$\Rightarrow S^2 = (\pi r l)^2$$

$$\Rightarrow S^2 = \pi^2 r^2 \left(h^2 + r^2\right)$$

$$\Rightarrow$$
 $S^2=\pi^2r^4+\pi^2h^2r^2$

$$\Rightarrow 2Srac{dS}{dt} = 4\pi^2 r^3 rac{dr}{dt} + 2\pi^2 r^2 h rac{dh}{dt} + 2\pi^2 h^2 r rac{dr}{dt}$$

$$egin{aligned} &\Rightarrow 2Srac{dS}{dt} = 4\pi^2r^3rac{dr}{dt} + 2\pi^2r^2hrac{dh}{dt} + 2\pi^2h^2rrac{dr}{dt} \ &\Rightarrow 2\pi rlrac{dS}{dt} = 2\pi^2rh\left[rac{2r^2}{h}rac{dr}{dt} + rrac{dh}{dt} + hrac{dr}{dt}
ight] \end{aligned}$$

$$\Rightarrow 25 \frac{dS}{dt} = 24\pi \left[\frac{2(7)^2}{24} \times 3 - 7 \times 4 + 24 \times 3 \right] \text{ [Given: r = 7, h = 24]}$$

$$ightarrow 25rac{dS}{dt} = 24\pi\left[rac{49}{4} - 28 + 72
ight]$$

$$\Rightarrow 25rac{dS}{dt} = 24\pi \left[rac{49+288-112}{4}
ight]$$

$$\Rightarrow rac{dS}{dt} = 24\pi \left[rac{225}{100}
ight]$$

$$\Rightarrow \frac{dS}{dt} = 24\pi(2.25)$$

$$\Rightarrow \frac{dS}{dt} = 24\pi(2.25)$$

$$\Rightarrow \frac{dS}{dt} = 54\pi \text{cm}^2/\text{sec}$$

43.

(c)
$$(-\infty, 1) \cup (2, 3)$$

Explanation: Given that;

$$f(x) = 2 \log(x - 2) - x^2 + 4x + 1$$

$$f'(x) = \frac{2}{(x-2)} - 2x + 4$$

$$= \frac{2}{(x-2)} - 2(x - 2)$$

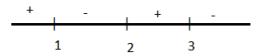
$$= \frac{2(1 - (x-2)^2)}{(x-2)}$$

$$= \frac{2(1 - x + 2)(1 + x - 2)}{(x-2)}$$

$$= \frac{2(3 - x)(x - 1)}{(x-2)}$$

Critical points are;

1, 2 and 3



F(x) is increasing in $(-\infty, 1) \cup (2, 3)$

44.

(d) relative minimum > relative maximum

Explanation:
$$f(x) = x + \frac{1}{x}$$

Then,
$$f'(x) = 1 - \frac{1}{x^2}$$

For, relative maximum and minimum values of x, we have f'(x) = 0

$$\Rightarrow 1 - \frac{1}{x^2} = 0$$

$$\Rightarrow$$
 x² = 1

$$\Rightarrow$$
 x = ± 1

Now,
$$f''(x) = \frac{2}{x^3}$$

When , x = 1, we get f''(x) = 2 > 0 and when x = -1, we get f''(x) = -2 < 0

 $f(x) = x + \frac{1}{x}$ has a local maximum at x = -1 and a local minimum at x = 1.

Now, the maximum value = f(-1) = -2 and minimum value = f(1) = 2

45.

(c)
$$\frac{1}{6}$$

Explanation:
$$f(x) = \frac{x}{4+x+x^2}$$

$$\Rightarrow f'(x) = \frac{4-x^2}{(4+x+x^2)^2}$$

$$\Rightarrow f'(x) = \frac{4-x^2}{(4+x+x^2)^2}$$

For a local maxima or minima,

$$f'(x) = 0$$

$$\frac{4-x^2}{(4+x+x^2)^2} = 0$$

$$\Rightarrow$$
 x = \pm 2 \in [-1, 1]

$$f(1) = \frac{1}{6} > 0$$

$$f(1) = \frac{1}{6} > 0$$

$$f(-1) = \frac{-1}{4} < 0$$

 $\Rightarrow \frac{1}{6}$ is the maximum value.

46.

(d)
$$\left(\frac{1}{e}\right)$$

Explanation:
$$\Rightarrow f(x) = \frac{\log x}{x}$$

 \therefore $f'(x) = \frac{\log x - x\frac{1}{x}}{x^2}$

$$\therefore f'(x) = \frac{\log x - x \cdot \frac{1}{2}}{x^2}$$

$$\Rightarrow$$
 f'(x) = log x - 1

$$\Rightarrow$$
 substitute f'(x) = 0

We get
$$x = e$$

$$F''(x) = \frac{1}{x}$$

Substitute x = e in f''(x)

$$\frac{1}{e}$$
 is point of maxima

$$\therefore$$
 The max value is $\frac{1}{e}$

47.

(c) decreasing in
$$(\frac{\pi}{2}, \pi)$$

Explanation: We have,
$$f(x) = 4 \sin^3 x - 6 \sin^2 x + 12 \sin x + 100$$

$$\therefore f'(x) = 12\sin^2 x \cdot \cos x - 12\sin x \cdot \cos x + 12\cos x$$

$$= 12 \cos x \left[\sin^2 x - \sin x + 1 \right]$$

$$= 12 \cos x [\sin^2 x + (1 - \sin x)]$$

Now 1 -
$$\sin x \ge 0$$
 and $\sin^2 x \ge 0$

$$\therefore \sin^2 x + 1 - \sin x > 0$$

Hence f'(x) > 0, when
$$\cos x > 0$$
 i.e., $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

So,
$$f(x)$$
 is increasing when $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

and f'(x) < 0, when
$$\cos x < 0$$
 i.e., $x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

Hence,
$$f(x)$$
 is decreasing when $x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

Hence,
$$f(x)$$
 is decreasing in $\left(\frac{\pi}{2}, \pi\right)$

48.

(b)
$$\frac{4}{3}$$

Explanation:
$$f(x) = \frac{1}{4x^2 + 2x + 1}$$

$$\Rightarrow$$
 f'(x) = 8x + 2

For local minima or maxima we have

$$f'(x) = 8x + 2 = 0$$

$$\Rightarrow x = \frac{-1}{4}$$

$$f''(x) = 8 > 0$$

$$\Rightarrow$$
 function has maxima at $x = \frac{-1}{4}$

$$f\left(rac{-1}{4}
ight)=rac{4}{3}$$

49. **(a)** decreases on [0, a]

Explanation: decreases on [0, a]

50.

(d)
$$x = \frac{1}{e}$$

Explanation: Consider
$$f(x) = y = x^{X}$$

Then,
$$\log y = \log x^{X} = x \cdot \log x$$

$$\Rightarrow f'(x) = x^x(1 + \log x)$$

$$\Rightarrow (1 + \log x) = 0 \dots (\because x^x \neq 0)$$

$$\Rightarrow \log x = -1 \Rightarrow x = e^{-1}$$

51.

(b)
$$\lambda > 2$$

Explanation:
$$\lambda > 2$$

52. **(a)** always increases

Explanation: We have, $f(x) = \tan x - x$

$$\therefore$$
 f'(x) = sec² x - 1

$$\Rightarrow f'(x) \geq 0, \forall x \in R$$

So, f(x) always increases

53. **(a)** $\frac{a+b+c}{3}$

Explanation:
$$f(x) = (x - a)^2 + (x - b)^2 + (x - c)^2$$

$$\Rightarrow$$
f'(x) = 2(x - a) + 2(x - b) + 2(x - c)

to find minima or maxima

$$f'(x) = 0$$

$$2(x - a) + 2(x - b) + 2(x - c) = 0$$

$$\Rightarrow$$
 x = $\frac{a+b+a}{3}$

$$f''(x) = 6 > 0$$

function has minima at $x = \frac{a+b+c}{3}$.

54.

(c) increasing on $(0, \frac{\pi}{2})$

Explanation: increasing on $(0, \frac{\pi}{2})$

55.

(d) monotonic function

Explanation: monotonic function

56.

(d)
$$-\frac{1}{e}$$

Explanation:
$$f(x) = x \log_e x$$

$$\Rightarrow$$
 f'(x) = 1 + log_ex

to find maxima or minima

$$f'(x) = 0$$

$$\Rightarrow$$
 1 + log_ex = 0

$$\Rightarrow$$
 x = $\frac{1}{e}$

$$f''(x) = \frac{1}{x}$$

$$f''(x) = \frac{e}{x}$$
$$f''(\frac{1}{e}) = e > 0$$

$$x = \frac{1}{e}$$
 is a local minima.

 \Rightarrow Minimum value of the function is

$$f\left(\frac{1}{e}\right) = \frac{1}{e}\log_e\left(\frac{1}{e}\right) = \frac{-1}{e}$$

57.

(d)
$$(-\infty, 4)$$

Explanation:
$$f(x) = 2x^2 - kx + 5$$

$$f'(x) = 4x - k$$

for f(x) to be increasing, we must have

$$4x - k > 0$$

since
$$x \in [1, 2], 4x \in [4, 8]$$

so, the minimum value of 4 x is 4.

since
$$K < 4x$$
, $K < 4$.

$$\mathrm{k}\in(-\infty,4)$$

58.

(b) none of these

Explanation:
$$f(x) = x + \frac{1}{x}$$

$$\Rightarrow$$
 f'(x) = 1 - $\frac{1}{r^2}$

For minimum or maximum value of the function

$$f'(x) = 0$$

$$\Rightarrow 1 - \frac{1}{x^2} = 0$$

$$\Rightarrow$$
 x = ± 1

$$f''(x) = \frac{2}{x^3}$$

$$\Rightarrow$$
 f"(x) = 1 > 0 \Rightarrow function has minima at x = 1.

$$f''(-1) = -1 > 0 \Rightarrow$$
 function has minima at $x = -1$.

59. (a) Strictly increasing on R

Explanation: Given, ff(x) = $x^3 + 6x^2 + 15x - 12$

$$f'(x) = 3x^2 + 12x + 15$$

$$f'(x) = 3x^2 + 12x + 12 + 3$$

$$f'(x) = 3(x^2 + 4x + 4) + 3$$

$$f'(x) = 3(x+2)^2 + 3$$

As square is a positive number

 \therefore f'(x) will be always positive for every real number

Hence f'(x) > 0 for all $x \in R$

 \therefore f'(x) is strictly increasing.

60. (a) -1 < x < -3

Explanation: Here, it is given that function,

$$f(x) = x^3 + 6x^2 + 9x + 3$$

$$f'(x) = 3x^2 + 12x + 9 = 0$$

$$f'(x) = 3(x^2 + 4x + 3) = 0$$

$$f'(x) = 3(x + 1)(x + 3) = 0$$

$$x = -1 \text{ or } x = -3$$

for x > -1 f(x) is increasing

for x < -3 f(x) is increasing

But for - 1 < x < -3 it is decreasing

61.

(d)
$$(0, \frac{1}{e})$$

Explanation: $(0, \frac{1}{e})$

Let
$$y = x^X$$

$$\Rightarrow \log(y) = x \log x$$

$$\Rightarrow \frac{1}{y} \times \frac{dy}{dx} = 1 + \log x$$

$$\Rightarrow rac{dy}{dx} = x^x (1 + \log x)$$

Since the function is decreasing,

$$\Rightarrow x^x x (1 + |\log x| < 0$$

$$\Rightarrow 1 + \log x < 0$$

$$\Rightarrow \log x < -1$$

$$\Rightarrow x < \frac{1}{e}$$

Therefore, function is decreasing on $(0,\frac{1}{\epsilon})$

62. **(a)** f(x) is invertible

Explanation: f(x) is invertible

63.

Explanation:
$$f(x) = \frac{x}{\log x}$$

Explanation:
$$f(x) = \frac{x}{\log x}$$

$$\Rightarrow f'(x) = \frac{\log x \cdot 1 - x \cdot \frac{1}{x}}{(\log x)^2}$$

For maximum or minimum values of x we have f'(x) = 0

$$f'(x)=0\Rightarrowrac{\log x-1}{(\log x)^2}=0\Rightarrow(\log x-1)=0$$

$$\Rightarrow \log x = 1 \Rightarrow x = e$$

Now,
$$f''(x) = (\log x - 1) \frac{-2}{(\log x)^3} + (\log x)^{-2} \cdot \frac{1}{x}$$

$$f''(e) = \frac{1}{e} > 0$$

Hence, f(x) has a minimum value f(e) = e.

64.

Explanation: We have,
$$\Rightarrow f(x) = \frac{x}{x^2+1}$$

$$\Rightarrow f'(x) = \frac{x^2 - 2x^2 + 1}{x^2 + 1}$$

$$ightarrow \mathrm{f}'(\mathrm{x}) = rac{\mathrm{x}^2 - 2\mathrm{x}^2 + 1}{\mathrm{x}^2 + 1} \
ightarrow \mathrm{f}'(\mathrm{x}) = -rac{\mathrm{x}^2 - 1}{\mathrm{x}^2 + 1}$$

$$\Rightarrow$$
 for critical points f'(x) = 0

when
$$f'(x) = 0$$

We get
$$x = 1$$
 or $x = -1$

When we plot them on number line as f'(x) is multiplied by -ve sign we get

For x > 1 function is decreasing

For x < -1 function is decreasing

But between -1 to 1 function is increasing

... Function is increasing in (-1, 1)

65. **(a)** 2

Explanation: Given xy = 1. To find minimum value of x + y

$$\Rightarrow$$
 y = $\frac{1}{x}$

$$f(x) = x + \frac{1}{x}$$

$$\Rightarrow$$
 f'(x) = 1 - $\frac{1}{r^2}$

To find local maxima or minima we have

$$f'(x) = 0$$

$$1 - \frac{1}{x^2} = 0$$

$$\Rightarrow$$
 x = $\pm 1 \Rightarrow$ y = ± 1

But given that $x > 0 \Rightarrow x = 1$, y = 1

$$f''(x) = \frac{2}{x^3}$$

$$f''(1)=2>0$$

function has minima at x = 1

$$f(1) = 2$$
.

66.

(d) odd and increasing

Explanation: odd and increasing

67.

(c)
$$\frac{1}{4}$$

Explanation: Given $f(x) = x^{25}(1 - x)^{75}$

$$f'(x) = x^{25}$$
. 75(1 - x)⁷⁴(-1)+(1 - x)⁷⁵. 25x²⁴

$$= 25x^{24}(1-x)^{74}\{-3x+(1-x)\}$$

$$=25x^{24}(1-x)^{74}(1-4x)$$

For maximum value of f(x) we have f'(x) = 0

$$\Rightarrow 25x^{24}(1-x)^{74}(1-4x) = 0$$

$$\Rightarrow$$
 x = 0, x = 1, x= $\frac{1}{4}$

All the values of $x \in [0,1]$

Note that
$$f(0) = f(1) = 0$$
 and $f(\frac{1}{4}) = \frac{3^{75}}{4^{100}}$

So, f(x) is maximum at $x = \frac{1}{4}$

68. (a) -2

Explanation: Given, $f(x) = x^2 + kx + 1$

For increasing

$$f'(x) = 2x + k$$

$$k \ge -2x$$

thus,

$$k \ge -2x$$

Least value of -2

69.

Explanation:
$$y^2 = 4x \Rightarrow x = \frac{y^2}{4}$$

$$\Rightarrow d = \sqrt{(x-2)^2 + (y-1)^2}$$

$$\Rightarrow d^2 = (x-2)^2 + (y-1)^2$$

$$\Rightarrow d^2 = \left(\frac{y^2}{4} - 2\right)^2 + (y-1)^2$$
Let $u = \left(\frac{y^2}{4} - 2\right)^2 + (y-1)^2$

$$\Rightarrow \frac{du}{dy} = 2\left(\frac{y^2}{4} - 2\right)\frac{y}{2} + 2(y-1)$$

To find minima

To find minima
$$\frac{du}{dy} = 0$$

$$2\left(\frac{y^2}{4} - 2\right)\frac{y}{2} + 2(y - 1) = 0$$

$$\Rightarrow y = 2 \Rightarrow x = 1 \left(x = \frac{y^2}{4}\right)$$

$$\frac{d^2u}{dy^2} = \frac{3y^2}{4}$$

$$\Rightarrow \left(\frac{d^2u}{dy^2}\right)_{(1,2)} = 3 > 0$$

Hence, nearest point is (1, 2).

70.

(c)
$$\frac{3}{4}$$

Explanation: Given, $f(x) = x^2 + x + 1$

$$\Rightarrow$$
 f'(x) = 2x + 1

For minimum value of f(x) we have f'(x) = 0

$$\Rightarrow 2x + 1 = 0 \Rightarrow x = \frac{-1}{2}$$

Now, f''(x) = 2 > 0, hence the minimum of f(x) exist at $x = \frac{-1}{2}$ and minimum value $= f(\frac{-1}{2}) = \frac{3}{4}$

71.

(d)
$$k\in(-\infty,4)$$

Explanation: : $f(x) = X^2 - kx + 5$ is increasing in $x \in [2, 4]$

$$f'(x) = 2x - k$$

f'(x) > 0, for increasing function

$$2x - k > 0$$

k < 2x (k should be less than minimum value of 2x)

$$k \in (-\infty, 4)$$

72. (a) strictly increasing

Explanation: strictly increasing

73.

(b) local minima at x = 2 and a local maxima at x = -2

Explanation: Given , $f(x) = x + \frac{4}{x}$

$$\Rightarrow f'(x) = 1 - rac{4}{x^2}$$

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow x = \pm 2$$

$$\Rightarrow f''(x) = \frac{3}{x^3}$$

$$\Rightarrow f''(2) = \frac{8}{8} = 1 > 0$$

$$\Rightarrow f''(x) = \frac{8}{x^3}$$

$$\Rightarrow f''(2) = \frac{8}{8} = 1 > 0$$

$$\Rightarrow f''(-2) = \frac{8}{-8} = -1 < 0$$

So, f(x) has a local minima at x = 2 and a local minima at x = -2.

74. (a) is an increasing function

Explanation: We have, $f(x) = 2x + \cos x$

$$\therefore f'(x) = 2 - \sin x > 0, \forall x$$

Hence, f(x) is an increasing function

75.

(b) 1 < x < 2

Explanation: $1 \le x \le 2$