IIT JEE Formulas

Maths Formulas

<u>Part 1</u>

Circle Formula		
The formula for circle are as stated below		
Description	Formula	
Area of a Circle	• In terms of radius: πr^2	
	• In terms of diameter: $\frac{\pi}{4} \times d^2$	
Surface Area of a Circle	πr^2	
General Equation of a	The general equation of a circle with coordinates of a centre (h, k) ,	
Circle	and radius r is given as: $\sqrt{(x-h)^2 + (y-k)^2} = r$	
Standard Equation of a	The Standard equation of a circle with centre (a, b) , and radius r is	
Circle	given as: $(x - a)^2 + (y - b)^2 = r^2$	
Diameter of a Circle	2 × radius	
Circumference of a Circle	$2\pi r$	
Intercepts made by Circle	$x^2 + y^2 + 2gx + 2fy + c = 0$	
~IJ051	i. On x –axis: $2\sqrt{g^2 - c}$	
211-	ii. On y —axis: $2\sqrt{f^2 - c}$	
Parametric Equations of a Circle	$x = h + r\cos\theta$; $y = k + r\sin\theta$	
Tangent	• Slope form: $y = mx \pm a\sqrt{1 + m^2}$	
	• Point form: $xx_1 + yy_1 = a^2$ or $T = 0$	
	• Parametric form: $x\cos \alpha + y\sin \alpha = a$	
Pair of Tangents from a Point:	$SS_1 = T^2$	

Length of a Tangent	$\sqrt{S_1}$
	$\sqrt{5}$ 1
Director Circle	$x^{2} + y^{2} = 2a^{2}$ for $x^{2} + y^{2} = a^{2}$
Chord of Contact	T = 0 i. Length of chord of contact= $\frac{2LR}{\sqrt{R^2 + L^2}}$ ii. Area of the triangle formed by the pair of the tangents and its chord of contact = $\frac{RL^3}{R^2 + L^2}$ iii. Tangent of the angle between the pair of tangents from $(x_1, y_1) = (\frac{2RL}{L^2 - R^2})$ iv. Equation of the circle circumscribing the triangle PT_1, T_2 is: $(x - x_1)(x + g) + (y - y_1)(y + f) = 0$
Condition of orthogonality of Two Circles	$2g_{1}g_{2} + 2f_{1}f_{2} = c_{1} + c_{2}$
Radical Axis	$S_1 - S_2 = 0$ i.e. $2(g_1 - g_2)x + 2(f_1 - f_2)y + (c_1 - c_2) = 0.$
Family of Circles	$S_1 + KS_2 = 0, S + KL = 0$
Quadratic Equation Formula The formula for quadratic equation are as stated below	
Description	Formula
General form of Quadratic Equation	$ax^2 + bx + c = 0$; where a, b, c are constants and $a \neq 0$.
Roots of equations	$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$
Sum and Product of Roots	If α and β are the roots of the quadratic equation $ax^2 + bx + c = 0$, then Sum of roots, $\alpha + \beta = -\frac{b}{a}$ Product of roots, $\alpha\beta = \frac{c}{a}$
Discriminant of Quadratic equation	The Discriminant of the quadratic equation $ax^2 + bx + c = 0$ is given by $D = b^2 - 4ac$.
Nature of Roots	• If $D = 0$, the roots are real and equal $\alpha = \beta = -\frac{b}{2a}$.

	 If D≠0, The roots are real and unequal. If D < 0, the roots are imaginary and unequal. If D > 0 and D is a perfect square, the roots are rational and unequal. If D > 0 and D is not a perfect square, the roots are irrational and unequal.
Formation of Quadratic Equation with given roots	If α and β are the roots of the quadratic equation, then $(x - \alpha)(x - \beta) = 0; x^2 - (\alpha + \beta)x + \alpha\beta = 0;$ • $x^2 - (Sum \ of \ roots)x + \ product \ of \ roots = 0$
Common Roots	• If two quadratic equations $a_1x^2 + b_1x + c_1 = 0$ & $a_2x^2 + b_2x + c_2 = 0$ have both roots common, then $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$. • If only one root α is common, then $\alpha = \frac{c_1a_2-c_2a_1}{a_1b_2-a_2b_1} = \frac{b_1c_2-b_2c_1}{c_1a_2-c_2a_1}$
Range of Quadratic Expression $f(x) = ax^2 + bx + c$ in restricted domain $x \in [x_1, x_2]$	• If $-\frac{b}{2a}$ not belong to $[x_1, x_2]$ then, $f(x) \in [\{f(x_1), f(x_2)\}, max\{f(x_1), f(x_2)\}]$ • If $-\frac{b}{2a} \in [x_1, x_2]$ then, $f(x) \in [\{f(x_1), f(x_2), -\frac{D}{4a}\}, max\{f(x_1), f(x_2), -\frac{D}{4a}\}]$
Roots under special cases	 Consider the quadratic equation ax² + bx + c = 0 If c = 0, then one root is zero. Other root is - b/a. If b = 0The roots are equal but in opposite signs. If b = c = 0, then both roots are zero. If a = c, then the roots are reciprocal to each other. If a + b + c = 0, then one root is 1 and the second root is -c/a. If a = b = c = 0, then the equation will become an identity and will satisfy every value of x.
Graph of Quadratic equation	 The graph of a quadratic equation ax² + bx + c = 0 is a parabola. If a > 0, then the graph of a quadratic equation will be concave upwards. If a < 0, then the graph of a quadratic equation will be concave downwards.

Maximum and Minimum value	Consider the quadratic expression $ax^2 + bx + c = 0$ • If $a < 0$, then the expression has the greatest value at $x = -\frac{b}{2a}$. The maximum value is $-\frac{D}{4a}$. • If $a > 0$, then the expression has the least value at $x = -\frac{b}{2a}$. The minimum value is $-\frac{D}{4a}$.
Quadratic Expression in Two Variables	The general form of a quadratic equation in two variables x and y is $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c$. To solve the expression into two linear rational factors, the condition is $\Delta = 0$ [a h g] $\Delta = [h b f] = 0$ [g f c] $abc + 2fgh - af^{2} - bg^{2} - ch^{2} = 0$ And $h^{2} - ab > 0$. This is called the Discriminant of the given expression.
Quick formula revision for jee ma	Binomial Theorem Formula ains and advanced.
Description	Formula
Description Binomial Theorem for positive Integral Index	Formula $(x + a)^{n} = {}^{n}C_{0x^{n}a^{0} + }{}^{n}C_{1x^{n-1}a + }{}^{n}C_{2x^{n-2}a^{2} + + }{}^{n}C_{rx^{n-r}a^{r} + + }{}^{n}C_{n}.xa^{n}$ General terms = $T_{r+1} = {}^{n}C_{rx^{n-r}a^{r}}$
Binomial Theorem for	$(x + a)^{n} = {}^{n}C_{0x_{a}^{n}} + {}^{n}C_{1x_{a}^{n-1}a} + {}^{n}C_{2x_{a}^{n-2}a^{2}} + \dots + {}^{n}C_{rx_{a}^{n-r}a^{r}} + \dots + {}^{n}C_{n}x_{a}^{n}$
Binomial Theorem for positive Integral Index Deductions of Binomial	$(x + a)^{n} = {}^{n}C_{0x^{n}a^{0} + }{}^{n}C_{1x^{n-1}a + }{}^{n}C_{2x^{n-2}a^{2} + + }{}^{n}C_{rx^{n-r}a^{r} + + }{}^{n}C_{n}.xa^{n}$ General terms = $T_{r+1} = {}^{n}C_{rx^{n-r}a^{r}}$ • $(1 + x)^{n} = {}^{n}C_{0+}{}^{n}C_{1x} + {}^{n}C_{2x^{2} + }{}^{n}C_{3x^{3} + + }{}^{n}C_{rx^{r} + + }{}^{n}C_{nx^{n}}$ which is the standard form of binomial expansion.

To determine a particular term in the expansion	In the expansion of $\left(x^{\alpha} \pm \frac{1}{x^{\beta}}\right)^{n}$, if x^{m} occurs in T_{r+1} , then r is given
	by $n\alpha - r(\alpha + \beta) = m \Rightarrow r = \frac{n\alpha - m}{\alpha + \beta}$ and the term
	which is independent of x then $a + p$
	$n\alpha - r(\alpha + \beta) = 0 \implies r = \frac{n\alpha}{\alpha + \beta}.$
	άτρ
To find a term from the	$T_r(E) = T_{n-r+2}(B)$
end in the expansion of	
$(x + a)^n$	
Binomial Coefficients and their properties	In the expansion of r^{n}
	$(1 + x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + \dots + C_{r}x^{r} + \dots + C_{n}x^{n}$
	Where $C_0 = 1$, $C_1 = n$, $C_2 = \frac{n(n-1)}{2!}$
	i. $C_0 + C_1 + C_2 + \dots + C_n = 2^n$
	ii. $C_0 - C_1 + C_2 - C_3 + \dots = 0$
	iii. $C_0 + C_2 + \dots = C_1 + C_3 + \dots = 2^{n-1}$
	iv. $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = \frac{2n!}{n!n!}$
	v. $C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1}$
	vi. $C_0 = \frac{C_1}{2} + \frac{C_2}{3} - \frac{C_3}{4} + \dots + \frac{(-1)^n C_n}{n+1} = \frac{1}{n+1}$
Greatest term in the	• The term in the expansion of $(x + a)^n$ of greatest
expansion of $(x + a)^n$:	coefficients
CHUS	$= \{T_{\underline{(n+2)}}, \qquad \text{when } n \text{ is } even T_{\underline{(n+1)}}, T_{\underline{(n+3)}} \}$
21-	when is is odd
	• The greatest term $(n+1)q$
	= $\{T_{p}, T_{p+1}, when \frac{(n+1)a}{x+a} = p \in Z T_{q+1}, \}$
	When $\frac{(n+1)a}{x+1}$ nnot belong to Z and $q < \frac{(n+1)a}{x+a} < q + 1$
Multinomial Expansion	If $n \in N$ then the general terms of multinomial expansion
	$(x_1 + x_2 + x_3 + \dots + x_k)^n$ is $\sum_{r_1 + r_2 + \dots + r_k = n} \frac{n!}{r_1! r_2! \dots r_k!} x_1^{r_1} \cdot x_2^{r_2} \dots x_k^{r_k}$

Binomial Theorem for	$ (1 + x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!}x^{3} + \dots $
Negative Integer Or	+ $\frac{n(n-1)(n-2)\dots(n-r+1)}{r!}x^{r} + \dots, x < 1$
Fractional Indices	$T_{r+1} = \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}x^{r}$

<u>Part 2</u>

	Vectors Formula
The formula for ve	ectors are as stated below
Description	Formula
Position Vector of a Point	If \vec{a} and \vec{b} are positive vectors of two points A and B, then $\vec{AB} = \vec{b} - \vec{a}$
	• Distance Formula: Distance between the two points $A(\vec{a})$ and $B(\vec{b})$ is $AB = \vec{a} - \vec{b} $
Coolor Duoduct	$AB = \begin{vmatrix} \vec{a} & -\vec{b} \end{vmatrix}.$ • Section Formula: $\vec{r} = \frac{\vec{n} \cdot \vec{a} + m \cdot \vec{b}}{m+n}$, Midpoint of $AB = \frac{\vec{a} + \vec{b}}{2}$
Scalar Product of Two vectors	$\vec{a} \cdot \vec{b} = \vec{a} \vec{b} \cos \theta \text{ , where } \vec{a} , \vec{b} \text{ are the magnitude of } \vec{a} \text{ and } \vec{b}$ respectively and θ is the angle between \vec{a} and \vec{b} • $i \cdot i = j \cdot j = k \cdot k = 1; i \cdot j = j \cdot k = k \cdot i = 0$, projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{ \vec{b} }$.
	• If $\vec{a} = a_1 i + a_2 j + a_3 k$ & $\vec{b} = b_1 i + b_2 j + b_3 k$ then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$.
	• The angle \emptyset between $\vec{a} \otimes \vec{b}$ is given by $\emptyset = \cos^{-1} \frac{\vec{a} \cdot \vec{b}}{ \vec{a} \vec{b} }, \ 0 \le \emptyset \le \pi.$ • $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a}$ Perpendicular to $\vec{b} (\vec{a} \ne 0, \vec{b} \ne 0).$

Vector Product of Two vectors	• If $\vec{a} \otimes \vec{b}$ are two vectors and θ is the angle between them then • $\vec{a} \times \vec{b} = \vec{a} \vec{b} \sin \theta \hat{n}$, where \hat{n} is the unit vector perpendicular to both $\vec{a} \otimes \vec{b}$ such that $\vec{a}, \vec{b} \otimes \hat{n}$ form a right handed screw system. • Geometrically $ \vec{a} \times \vec{b} $ =area of the parallelogram whose two adjacents sides are represented by $\vec{a} \otimes \vec{b}$. • $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0; \ \hat{i} \times \hat{j} = \hat{k}, \ \hat{j} \times \hat{k} = \hat{i}, \ \hat{k} \times \hat{i} = \hat{j}$ • If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ $\otimes \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ then $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ a \times \vec{b} = \begin{vmatrix} \hat{o} \leftrightarrow \vec{a} \text{ and } \vec{b} \text{ are parallel (collinear) } (\vec{a} \neq 0, \ \vec{b} \neq 0) \text{ i.e.}$ $\vec{a} \times \vec{b} = \vec{o} \leftrightarrow \vec{a}$ and \vec{b} are parallel (collinear) $(\vec{a} \neq 0, \ \vec{b} \neq 0)$ i.e. $\vec{a} = K \vec{b}$ where K is a scalar. • Unit vector perpendicular to the plane of $\vec{a} \otimes \vec{b}$ is $\hat{n} = \pm \frac{\vec{a} \times \vec{b}}{ \vec{a} \times \vec{b} }$. • If $\vec{a}, \vec{b} \otimes \vec{c}$ are the position vectors of 3 points A, B & C then the vector area of triangle $ABC = \frac{1}{2} [\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}]$. The points A, B & C are collinear if • $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}$ • Area of any quadrilateral whose diagonal vectors are $\vec{d}_1 \otimes \vec{d}_2$ is given by $\frac{1}{2} \vec{d}_1 \times \vec{d}_2 $. • Lagrange'sldentity: $(\vec{a} \times \vec{b})^2 = \vec{a} ^2 \vec{b} ^2 - (\vec{a}, \vec{b})^2 = [(\vec{a} \times \vec{a}) (\vec{a} \times \vec{b}) (\vec{b} \times \vec{a}) (\vec{b})$
Scalar Triple	$\rightarrow \rightarrow \rightarrow$
Product	• The scalar triple product of three vectors $a, b \& c$ is defined as: $\vec{a} \times \vec{b} \cdot \vec{c} = \vec{a} \vec{b} \vec{c} \sin \sin \theta \cos \cos \phi$
	• Volume of tetrahedron $V = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$
	 In a scalar triple product the position of dot and cross can be interchanged i.e.

	$\rightarrow (\overrightarrow{,} \rightarrow (\overrightarrow{,} \rightarrow))))))))))))))))))))))))))))))))))))$	
	$\vec{a}. (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}). \vec{c} \text{ Or } [\vec{a} \cdot \vec{b} \cdot \vec{c}] = [\vec{b} \cdot \vec{c} \cdot \vec{a}] = [\vec{c} \cdot \vec{a} \cdot \vec{b}]$ $\vec{a}. (\vec{b} \times \vec{c}) = -\vec{a}. (\vec{c} \times \vec{b}) \text{ i.e. } [\vec{a} \cdot \vec{b} \cdot \vec{c}] = -\vec{a} \cdot \vec{c} \cdot \vec{b}$	
	• If $\vec{a} = a_1 i + a_2 j + a_3 k; \ \vec{b} = b_1 i + b_2 j + b_3 k$ &	
	$\vec{c} = c_1 i + c_2 j + c_3 k$ then	
	$\begin{bmatrix} \vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} \\ \vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3} \\ \vec{c}_{1} & \vec{c}_{2} & \vec{c}_{3} \end{bmatrix}$	
	$\begin{bmatrix} \vec{a} \cdot \vec{b} \cdot \vec{c} \end{bmatrix} = \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix}$	
	• If \vec{a} , \vec{b} , \vec{c} are coplanar $\leftrightarrow \left[\vec{a} \ \vec{b} \ \vec{c}\right] = 0$.	
	• Volume of tetrahedron OABC with O as origin & $A(\vec{a})$, $B(\vec{b})$ and	
	$C(\vec{c})$ be the vertices $= \left \frac{1}{6} [\vec{a} \ \vec{b} \ \vec{c}]\right .$	
	• The position vector of the centroid of a tetrahedron if the pv's	
	of its vertices are $\vec{a}, \vec{b}, \vec{c} \otimes \vec{d}$ are given by $\frac{1}{4}[\vec{a} + \vec{b} + \vec{c} + \vec{d}]$.	
	\bullet	
Vector Triple Product	$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}, (\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{b} \cdot \vec{c})\vec{a}$	
	In general: $(a \times b) \times c \neq a \times (b \times c)$	2
	Parabola Formula	U
	The formula for parabola are as stated below	
Description	Formula	
Equation of standard	The equation of parabola with focus at $(a, 0)$, $a > 0$ and directrix $x = -a$ is given as	
parabola:	$y^2 = 4ax$	
CHU	When vertex is (0, 0) then axis is given as	
21-	y = 0	
	Length of latus rectum is equals to $4a$	
Parametric	Ends of the latus rectum are L(a, 2a) and L'(a, -2a). The point (x, y_1) lies outside, on or inside the parabola which is given as	
representation	1	
	y = 4ax Therefore, equation of parabola now becomes,	
	$y_1^2 - 4ax \ge 0$	
	1	
	Or $y_1^2 - 4ax < 0$	
Line and a	Length of the chord intercepted by the parabola $y^2 = 4ax$ on the line	
parabola	y = mx + c is given as	
	· · · -	

		1
	$\frac{4}{m^2}(\sqrt{a(1+m^2)(a-mc)})$	
Tangents to the	Tangent of the parabola $y^2 = 4ax$ is given as T = 0	
parabola	$y = mx + \frac{a}{m}$, $m \neq 0$ is the tangent of parabola $y^2 = 4ax$ at $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$	
Normal to the	Normal to the parabola $y^2 = 4ax$ is given as	
parabola $y^2 = 4ax$	$y - y_1 = \frac{-y_1}{2a} (x - x_1) $ at (x_1, y_1)	
A chord with a	The equation of the chord of parabola $y^2 = 4ax$ with midpoint (x_1, y_1) is	
given middle point	given as $T = S_1$.	
point	Here,	
	$S_1 = y_1 - 4ax$	
	Definite Integration Formula	
The formula for de	efinite integration are as stated below	
Description	Formula	
Definite Integral as Limit Sum	$\int_{a}^{b} f(x)dx = \sum_{r=1}^{n} hf(a + rh)$	
	Here $h = \frac{b-a}{n}$ is the length of each subinterval	
Definite Integral Formula Using	$\int_{a}^{b} f(x)dx = F(b) - F(a), \text{ where } F(x) = f(x)$	
the	a	
Fundamental theorem of	TALK	U
calculus	NOHOLK	
Properties of Definite Integral	• $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt$	
DITE	$\oint_a f(x). dx = - \int_b f(x). dx$	
Shu	• $\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$	
	a a	
	• $\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$	
	• $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx$	
	$\begin{array}{c} \bullet \\ a \\ b \\ c \\ c$	
	• $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx$	

Definite	• $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dt$ This is a formula derived from the above formula. • $\int_{0}^{2a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ if $f(2a - x) = f(x)$ • $\int_{0}^{2a} f(x) dx = 0$ if $f(2a - x) = -f(x)$ • $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ if $f(x)$ is an even function (i.e., f(-x) = f(x)). • $\int_{-a}^{a} f(x) dx = 0$ if $f(x)$ is an odd function (i.e., f(-x) = -f(x)).
Definite Integrals involving Rational or irrational Expression	• $\int_{a}^{\infty} \frac{dx}{x^{2} + a^{2}} = \frac{\pi}{2a}$ • $\int_{a}^{\infty} \frac{x^{m} dx}{x^{n} + a^{n}} = \frac{\pi a^{m-n+1}}{n \frac{(m+1)\pi}{n}}, \ 0 < m + 1 < n$
-10	• $\int_{a}^{\infty} \frac{x^{p-1}dx}{1+x} = \frac{\pi}{\sin\sin(p\pi)}, 0 • \int_{a}^{\infty} \frac{dx}{\sqrt{a^2 - x^2}} = \frac{\pi}{2}• \int_{a}^{\infty} \sqrt{a^2 - x^2} dx = \frac{\pi a^2}{4}$
Definite Integrals involving Trigonometric Functions	• $\int_{0}^{\pi} mx (nx) dx = \{0 \text{ if } m \neq n \frac{\pi}{2} \text{ if } m = n m, n \text{ positive} $ integers • $\int_{0}^{\pi} mx (nx) dx = \{0 \text{ if } m \neq n \frac{\pi}{2} \text{ if } m = n m, n \text{ positive} $ integers π
	• $\int_{0}^{n} mx (nx) dx = \{0 if m + n even \frac{2m}{m^{2} - n^{2}} if m = n$ integers

	• $\int_{0}^{\frac{\pi}{2}} x dx = \int_{0}^{\frac{\pi}{2}} x dx = \frac{\pi}{4}$	
	• $\int_{0}^{\frac{\pi}{2}} x dx = \int_{0}^{\frac{\pi}{2}} dx = \frac{1.3.52m-1}{2.4.62m}, \frac{\pi}{2}, m = 1, 2,$	
	• $\int_{0}^{\frac{\pi}{2}} x dx = \int_{0}^{\frac{\pi}{2}} dx = \frac{2.4.62m}{1.3.52m+1}, m = 1, 2,$	
If $f(x)$ is a periodic function	• $\int_{0}^{nT} f(x)dx = n \int_{0}^{T} f(x)dx, \ n \in \mathbb{Z}, \ \int_{a}^{a+nT} f(x)dx = n \int_{0}^{T} f(x)dx, \ n \in \mathbb{Z}$	
with period T	• $\int_{mT}^{nT} f(x)dx = (n-m)\int_{0}^{T} f(x)dx, m, n \in \mathbb{Z}, \int_{nT}^{a+nT} f(x)dx = \int_{0}^{a} f(x)dx$	
	• $\int_{a+nT}^{b+nT} f(x)dx = \int_{a}^{a} f(x)dx, \ n \in \mathbb{Z}, \ a, b \in \mathbb{R}$	
Leibnitz Theorem	If $F(x) = \int_{g(x)}^{h(x)} f(t)dt$, then $\frac{dF(x)}{dx} = h'(x)f(h(x)) - g'(x)f(g(x))$	
Ellipse Formula The formula for ellipse are as stated below		
Description	Formula	
Standard Equation	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $a > \& b^2 = a^2(1 - e^2)$	
SHU	• Eccentricity: $e = \sqrt{1 - \frac{b^2}{a^2}}, (0 < e < 1)$, Directrices:	
	$x = \pm \frac{a}{e}$	
	• Foci: $S = (\pm a e, 0)$. Length of major axes = $2a$ and minor axes = $2b$	
	• Vertices: $A' = (-a, 0) \& A = (a, 0).$	
	• Latus Rectum: $=\frac{2b^2}{a} = 2a(1 - e^2)$	
L	1	

Auxiliary circle	$x^2 + y^2 = a^2$
Parametric Representation	$x = a\cos\theta \& y = b\sin\theta$
Position of a Point w.r.t. an Ellipse	The point P(x_1, y_1) lies outside, inside or on the ellipse according as; $\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} - 1 > < or = 0.$
Line and an Ellipse	The line $y = mx + c$ meets the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in two points real, coincident or imaginary according as c^2 is $< =$ or $> a^2m^2 + b^2$.
Tangents	• Slope form: $y = mx \pm \sqrt{a^2 m^2 + b^2}$, point form: $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$ • Parametric form: $\frac{xcos\theta}{a} + \frac{ysin\theta}{b} = 1$
Normal	$\frac{\frac{a^{2}x}{x_{1}} - \frac{b^{2}y}{y_{1}}}{y} = a^{2} - b^{2}, ax. sec\theta - by. cosec\theta = (a^{2} - b^{2}),$ $y = mx - \frac{(a^{2} - b^{2})m}{\sqrt{a^{2} + b^{2}m^{2}}}$
Director Circle	$x^2 + y^2 = a^2 + b^2$
Part 3 GEIO	$x^{2} + y^{2} = a^{2} + b^{2}$

Part 3

Inverse Trigonometric Functions Formula

The formula for inverse trigonometric functions are as stated below

Description	Formula
Arcsine Function	Arcsine function is an inverse of sine function which is denoted by sin^{-1} The formula for arcsin is given as $sin^{-1}(-x) = -sin^{-1}(x), x \in [-1, 1]$

	.,
	In center $I(\frac{ax_1+bx_2+cx_3}{a+b+c}, \frac{ay_1+by_2+cy_3}{a+b+c})$
	Excentre $I_1\left(\frac{-a_x+bx_2+cx_3}{-a+b+c}, \frac{-ay_1+by_2+cy_3}{-a+b+c}\right)$
Area of Triangle	$\Delta ABC = \frac{1}{2} \left x_1 y_1 1 x_2 y_2 1 x_3 y_3 1 \right $
Slope formula	Line Joining two points $(x_1y_1) \& (x_2y_2)$
	$y_1 - y_2$
	$m = \frac{y_1 - y_2}{x_1 - x_2}$
Condition of collinearity of three	$\left x_{1} y_{1} 1 x_{2} y_{2} 1 x_{3} y_{3} 1\right = 0$
points	
Angle between two straight lines	
	$tan\theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $
	1 4 4 1
Bisector of the angles between two	$\frac{ax+by+c}{ax+by+c} = \pm \frac{(a^{\dagger}x+b^{\dagger}y+c^{\dagger})}{at}$
lines	$\frac{ax+by+c}{\sqrt{a^2+b^2}} = \pm \frac{(a^1x+b^1y+c^1)}{\sqrt{a^2+b^2}}$
Condition of Concurrency	For three lines $a_{1}x + a_{2}y + c_{1} = 0$, $i = 123$ is
	$\begin{vmatrix} a_1 b_1 c_1 a_2 b_2 c_2 a_3 b_3 c_3 \end{vmatrix} = 0$
A pair of straight lines through origin	$ax^2 + 2hxy + by^2 = 0$
	If θ is the acute angle between the pair of straight lines, then $tan\theta$
	$= \frac{2\sqrt{(h^2 - ab)}}{a+b}$
	AHU
Two Lines:	ax + bx + c = 0 and $ax + by + c = 0$ Two lines
	a. Parallel if $\frac{a}{a} = \frac{b}{b'} \neq \frac{c}{c'}$
	b. Distance between two parallel lines= $\frac{C_1 - C_2}{\sqrt{a^2 + b^2}}$
-dSEL	$ \sqrt{a^2+b^2} $
CHOSHU	c. Perpendicular: $if aa + bb = 0$
A point and line	
A point and line	a. Distance between point and line = $\frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$
	b. Reflection of a point about a line:
	$\frac{x - x_1}{a} = \frac{y - y_1}{b} = -2\frac{ax_1 + by_1 + c}{a^2 + b^2}$
	c. Foot of the perpendicular from a point on the line is
	$\frac{x - x_1}{a} = \frac{y - y_1}{b} = -\frac{ax_1 + by_1 + c}{a^2 + b^2}$
	<i>a p a[*]+b[*]</i>

Indefinite Integration formula

The formula for indefinite integration are as stated below

If f & g are functions of x such that $g'(x) = f(x)$ then,	$\int f(x)dx = g(x) + c \Leftrightarrow \frac{d}{dx} \{g(x) + c\} = f(x)$ Here, c is called the constant of integration
Standard Formula:	• $\int (ax + b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + c, \ n \neq -1$
	• $\int \frac{dx}{ax+b} = \frac{1}{a} \ln \ln (ax + b) + c$
	• $\int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + c$
	• $\int a^{px+q} dx = \frac{1}{P} \frac{a^{px+q}}{\ln \ln a} + c$, Here $a > 0$
	• $\int \sin(ax + b)dx = -\frac{1}{a}\cos\cos(ax + b) + c$
	• $\int \cos(ax + b)dx = \frac{1}{a}\sin\sin(ax + b) + c$
	• $\int tan (ax + b)dx = \frac{1}{a} \ln \ln \sec \sec (ax + b) + c$
CHOSHU	• $\int \cot(ax + b)dx = \frac{1}{a} \ln \ln \sin \sin(ax + b) + c$
511-	• $\int (ax+b)dx = \frac{1}{a}tan(ax+b) + c$
	• $\int (ax + b)dx = -\frac{1}{a}\cot(ax + b) + c$
	• $\int dx = \ln(\sec x + \tan x) + c$
	or $\int dx = ln tan\left(\frac{\pi}{4} + \frac{x}{2}\right) + c$

$$\begin{aligned} \bullet \quad \int dx &= \ln \left(x + \cot x \right) + c \text{ or } \int dx &= \ln \tan \frac{x}{2} + c \\ \text{ or } \int dx &= \ln \left(cosec x + \cot x \right) + c \\ \bullet \quad \int \frac{dx}{\sqrt{a^2 - x^2}} = \frac{x}{a} + c \\ \bullet \quad \int \frac{dx}{d^2 + x^2} = -\frac{1}{a} \frac{x}{a} + c \\ \bullet \quad \int \frac{dx}{d^2 + x^2} = -\frac{1}{a} \frac{x}{a} + c \\ \bullet \quad \int \frac{dx}{d^2 + x^2} = -\frac{1}{a} \frac{x}{a} + c \\ \bullet \quad \int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left[x + \sqrt{x^2 + a^2} \right] + c \\ \bullet \quad \int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left[x + \sqrt{x^2 - a^2} \right] + c \\ \bullet \quad \int \frac{dx}{\sqrt{x^2 - a^2}} = \frac{1}{2a} \ln \left| \frac{a \cdot x}{a \cdot x} \right| + c \\ \bullet \quad \int \frac{dx}{d^2 - x^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln \left(\frac{x + \sqrt{x^2 + a^2}}{a} \right) + c \\ \bullet \quad \int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln \left(\frac{x + \sqrt{x^2 + a^2}}{a} \right) + c \\ \bullet \quad \int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln \left(\frac{x + \sqrt{x^2 - a^2}}{a} \right) + c \\ \bullet \quad \int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln \left(\frac{x + \sqrt{x^2 - a^2}}{a} \right) + c \\ \end{bmatrix}$$
Integration by substitutions
If we substitute $f(x) = t$, then $f(x) dx = dt$
Integration by part
$$\int (f(x)g(x)) dx = f(x) \int (g(x)) dx - \int \left(\frac{d}{dx} (f(x)) \int (g(x)) dx \right) dx \end{aligned}$$

Integration of type	
	$\int \frac{dx}{ax^2 + bx + c}, \int \frac{dx}{\sqrt{ax^2 + bx + c}}, \int \sqrt{ax^2} + bx + cdx$
	Make the substitute $x + \frac{b}{2a} = t$
Integration of trigonometric	$\int \frac{dx}{a+bx} \ or \int \frac{dx}{a+bx} \ or \int \frac{dx}{ax+b\sin \sin x \cos \cos x + cx}$
functions	Here we put $\tan tan x = t$
	$\int \frac{dx}{a+b\sin \sin x} or \int dx/(a + b \cos \cos x) or \int \frac{dx}{a+b\sin \sin x + c\cos \cos x}$
	Here we put $\tan tan \frac{x}{2} = t$
Integration of type	$\int \frac{x^2+1}{x^4+Kx^2+1} dx$
	Here k is any constant
	So, we divide numerator and denominator by x^2 and put $x \mp \frac{1}{x} = t$
Application of Derivatives Formula	
The formula for application of derivatives are as stated below	
Description	

Description	Formula
Equation of tangent and normal	• Tangent at (x_1, y_1) is given by $(y - y_1) = f'(x_1)(x - x_1)$, here the $f'(x_1)$ should be real • And normal at (x_1, y_1) is given by $(y - y_1) = -\frac{1}{f'(x_1)}(x - x_1)$
SHUC	, here the $f'(x_1)$ should be non-zero and real.
Tangent from an external point	Given a point $P(a, b)$ which does not lie on the curve $y = f(x)$, then the equation of possible tangents to the curve $y = f(x)$, passing through (a, b) can be found by solving for the point of contact Q.
	$f'(h) = \frac{f(h) - b}{h - a}$

	Q(h, f(h))
	y = f(x)
	And equation of the tangent is $y - b = \frac{f(h)-b}{h-a}(x - a)$
Length of tangent, normal, subtangent, subnormal	• $PT = k \sqrt{1 + \frac{1}{m^2}}$ is the length of the tangent • $PN = k \sqrt{1 + m^2}$ is the length of normal • $TM = \left \frac{k}{m}\right $ is the length of the subtangent • $MN = km $ is the length of subnormal
Angle between the curves	Angle between two intersecting curves is defined as the acute angle between their tangents (or normal) at the point of intersection of two curves. So, $\tan \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $
Rolle's Theorem:	 If a function f defined on [a, b] is continuous on [a, b] derivable on (a, b) and f(a) = f(b), then there exists at least one real number c between a and b (a < c < b) such that f'(c) = 0
Lagrange's Mean Value Theorem (LMVT):	If a function f defined on [a, b] is (i) Continuous on [a, b] and (ii) derivable on (a, b) then there exists at least one real numbers between a and b (a < c < b) such that $\frac{f(b)-f(a)}{b-a} = f'(c)$
Formulae of Mensuration	• Volume of a cuboid = <i>lbh</i>
	 Surface area of cuboid = 2(lb + bh + hl) Volume of cube = a³
	• Surface area of cube = $6a^2$
	• Volume of a cone $=$ $\frac{1}{3}\pi r^2 h$

	• Curved surface area of cone = $\pi rl (l = slant height)$
	• Curved surface area of a cylinder = $2\pi rh$
	• Total surface area of a cylinder = $2\pi rh + 2\pi r^2$
	• Volume of a sphere $=\frac{4}{3}\pi r^3$
	• Surface area of a sphere = $4\pi r^2$
	• Area of a circular sector $=\frac{1}{2}r^2\theta$, here θ is in radian
	• Volume of a prism = (area of the base)×(height)
	Lateral surface area of a prism
	$=$ (perimeter of the base) \times (height)
	• Total surface area of a prism
	= (lateral surface area)×2(area of the base)
	• Volume of a pyramid = $\frac{1}{3}$ (area of the base)×(height)
	Curved surface area of a pyramid
	$=\frac{1}{2}$ (perimeter of the base)×(slant height)
	AFU
Part 4 SHOSHWAT	
Part 4	
SHUSS	

Part 4

Sequence & Series

The formula for sequence and series are as stated below

Description	Formula
An arithmetic progression (A. P)	a, $a + d$, $a + 2d$,, $a + (n - 1)d$ is an A. P. Let a be the first term and d be the common difference of an A. P., then n^{th} term = $t_n = a + (n - 1)d$

The sum of first n terms of A. P.	$S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2} [a+l]$
	r^{th} term of an A. P. when sum of first r terms is given is
	$t_r = S_r - S_r - 1$
Properties of A. P.	• If a, b, c are in A. P. $\Rightarrow 2b = a + c$ & if a, b, c, d are in A. P. $\Rightarrow a + d = b + c$
	• Sum of the terms of an A.P. equidistant from the
	beginning & end = sum of first & last term.
Arithmetic Mean	If three terms are in A.P. then the middle term is called the
	A.M. between the other two, so if a, b, c are in A.P., b is
	A.M. of a & c. n – Arithmetic Means between two number
	If a, b are any two given numbers & a , A_1 , A_2 ,, A_n , b are
	in A.P. then A_1, A_2, \dots, A_n are the
	n A.M.'s between a & b.
	$A_1 = a + \frac{b-a}{n+1}$
	$A_2 = a + \frac{2(b-a)}{n+1},, A_n = a + \frac{n(b-a)}{n+1}$
	$\sum_{r=1}^{n} A_{r} = nA$ where A is the single A.M. between $a \& b$.
	r=1
	2 3 4
Geometric Progression	$a, ar, ar^2, ar^3, ar^4, \dots$, is a G.P. with a as the first term & r
	as a common ratio.
	• n^{th} term = ar^{n-1}
	• Sum of the first <i>n</i> terms i.e.,
	$S_n = \{ \frac{a(r^n - 1)}{r - 1}, r \neq 1 na, r = 1 \}$
, d'	TA
Harmonic Mean	• If a, b, c are in H.P., b is the H.M. between a & c,
Harmonic Mean	then $b = \frac{2ac}{a+c}$
SHO	• H.M. of $a_1, a_2 \dots a_n$ is given by
	$\frac{1}{H} = \frac{1}{n} \left[\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right]$
Relation between means:	$G^2 = AH, A.M. \ge G.M. \ge H.M.$
	• $A.M. = G.M. = H.M.$ if $a_1 = a_2 = a_3 = = a_n$
Important Results	• $\sum_{r=1}^{n} (a_r \pm b_r) = \sum_{r=1}^{n} a_r \pm \sum_{r=1}^{n} b_r$

	1	
	• $\sum_{r=1}^{n} k a_r = k \sum_{r=1}^{n} a_r$ • $\sum_{r=1}^{n} k = nk$ where k is constant • $\sum_{r=1}^{n} r = 1 + 2 + 3 + + n = \frac{n(n+1)}{2}$ • $\sum_{r=1}^{n} r^2 = 1^2 + 2^2 + 3^2 + + n^2 = \frac{n(n+1)(2n+1)}{6}$ • $\sum_{r=1}^{n} r^3 = 1^3 + 2^3 + 3^3 + + n^3 = \frac{n^2(n+1)^2}{4}$	
Hyperbola Formula		
The formula for hyperbola are as stated below	···	
Description	Formula	
Standard Equation	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ where } b^2 = a^2(e^2 - 1)$ Foci: $S \equiv (\pm ae, 0)$ Directrices: $x = \pm \frac{a}{e}$ Vertices: $A \equiv (\pm a, 0)$ Latus Rectum $l = \frac{2b^2}{a} = 2a(e^2 - 1)$	
TIUV		
Conjugate Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Are conjugate hyperbolas of each	
Conjugate Hyperbola Auxiliary Circle	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Are conjugate hyperbolas of each	
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Are conjugate hyperbolas of each $x^2 + y^2 = a^2$	
Auxiliary Circle	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Are conjugate hyperbolas of each	

Normal:	• At the point $P(x_1, y_1)$ is $\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + b^2 = a^2e^2$ • At the point $P(a \sec \sec \theta, b \tan \tan \theta)$ is $\frac{ax}{\sec \sec \theta} + \frac{by}{\tan \tan \theta} = a^2 + b^2 = a^2e^2$ • Equation of normal in term of its slope <i>m</i> is $y = mx \pm \frac{(a^2+b^2)m}{\sqrt{a^2-b^2m^2}}$
Asymptotes	$\frac{x}{a} + \frac{y}{b} = 0 \text{ and } \frac{x}{a} - \frac{y}{b} = 0$ Pair of asymptotes: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ •
Rectangular Or Equilateral Hyperbola	• $xy = c^2$ eccentricity is $\sqrt{2}$ • Vertices: $(\pm c \pm c)$ • Foci: $\pm \sqrt{2}c, \pm \sqrt{2}c$ • Directrices: $x + y = \pm \sqrt{2}c$ • Latus Rectum $l = 2\sqrt{2}c = T. A. = C. A.$ • Parametric equation $x = ct, y = \frac{c}{t}, t \in R - \{0\}$ • Equation of the tangent at $P(x_1, y_1) = \frac{x}{x_1} + \frac{y}{y_1} = 2$ • Equation of the tangent at $P(t) = \frac{x}{t} + ty = 2c$ • Equation of the normal at $P(t) = xt^3 - yt = c(t^4 - 1)$ • Chord with a given middle point as $(h, k) = kx + hy = 2hk$
SHOSHWO	r Maharka

By:- Shashwat Mahalka

Physics Formulas

<u>Part 1</u>

Uniform Circular Motion Formula The formula for uniform circular motion are as stated below	
Description	Formula
The formula for Angular Distance is	$\Delta \theta = \omega \Delta t$, Where t is time, ω is angular speed and θ is angular distance.
The formula for linear velocity is given by	$v = R\omega$ Where speed and R is radius and ω is angular speed.
The formula for Centripetal Acceleration is given by	$A_{c} = v^{2}/R,$ Where R is the radius and v is the velocity. $A_{c} = \omega^{2}R$ Where R is the radius and ω is angular speed $Ac = 4\pi^{2}v^{2}R$ Where R is the radius and v is the frequency
Average Angular Velocity	$\omega_{av} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$
Instantaneous angular Velocity	$\omega = \frac{d\theta}{dt}$
Average Angular acceleration	$\alpha_{av} = \frac{\omega_2^{-\omega_1}}{t_2 - t_1} = \frac{\Delta \omega}{\Delta t}$
Instantaneous angular acceleration	$\alpha = \frac{d\omega}{dt} = \omega \frac{d\omega}{d\theta}$
Relation between speed and angular velocity	$v = r\omega \text{ and } \vec{v} = \vec{\omega} \times \vec{r}$
Tangential acceleration	$a_t = \frac{dV}{dt} = r \frac{d\omega}{dt} = \omega \frac{dr}{dt}$
Radial or normal or centripetal acceleration Angular Acceleration	$a_{t} = \frac{dV}{dt} = r \frac{d\omega}{dt} = \omega \frac{dr}{dt}$ $a_{r} = \frac{V^{2}}{r} = \omega^{2} r$ $\vec{a}_{r} = \vec{d\omega} \text{ (Non mation)}$
Normal reaction of road on a concave bridge	$\vec{\alpha} = \frac{\vec{d\omega}}{dt} (Non - uniform motion)$ $N = mg \cos\theta + \frac{mv^2}{r}$

Force between two	$F_{\frac{A}{D}} = \frac{\mu_{o}I_{A}I_{B}}{(2\pi r)}$
parallel current carrying	В
wires	$I_{A, B}$ = Current carrying by wires A and B
Capacitance Formula The formula for capacitance are as stated below	
Description	Formula
Capacitance of a	$C = \frac{Q}{V}$
parallel plate	v v
capacitor in terms	Here, C is the capacitance of the capacitor, Q is the charge
of charge and	stored and V is the potential difference between the plates.
potential difference	
Capacitance of a	$C = \frac{\varepsilon_0^A}{d}$
parallel plate	
capacitor in terms	Here, ε_0^{0} is the permittivity of free space and its value is
of surface area and	8.854×10 ^{$-12m-3kg-1s4A2$, A is the surface area of the plates}
distance between	and d is the distance between the plates.
the plates	· · /
Capacitance of a	To find the formula for capacitance of a spherical capacitor we
spherical capacitor	will use the gauss's law.
derivation	Let the charge on the spherical surface be Q , the radius of \square
	smaller sphere be r_a and radius of the bigger sphere be r_b .
	Using gauss's law, we can write:
	$\oint \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}$ $E(4\pi r^2) = \frac{Q}{\varepsilon_0}$ $E = \frac{Q}{4\pi\varepsilon_0 r^2}$ $V = \frac{Q}{4\pi\varepsilon_0 r}$
	$\varepsilon = \varepsilon_0$
	$E(4\pi r^2) = \frac{Q}{\varepsilon_0}$
-15	F = - Q
CHUY	$L = \frac{1}{4\pi\epsilon_0 r^2}$
21-	$V = \frac{Q}{Q}$
	$4\pi\varepsilon_0 r$
The potential	
difference between	$V_{ab} = V_a - V_b = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b}\right)$
the plates	
- 1	$= \frac{Q}{4\pi\varepsilon_0} \frac{r_b - r_a}{r_a r_b}$
	Therefore, the capacitance will be:
	$C = \frac{Q}{V_{ab}} = 4\pi\varepsilon_0 \frac{r_a r_b}{r_b - r_a}$

Energy stored in	• $U = \frac{1}{2}CV^2$
capacitor	• $U = \frac{Q^2}{2C}$
	• $U = \frac{QV}{2}$
	Here, U is the energy, C is the capacitance, V is the potential
	difference and Q is the charge stored.
Energy density of	Energy density $= \frac{1}{2} \varepsilon_0 \varepsilon_r E^2$
capacitor	In vacuum:
	Energy density $=\frac{1}{2}\varepsilon_0 E^2$
	Here, $\varepsilon_0^{}$ is the permittivity of free space, $\varepsilon_r^{}$ is the relative
	permittivity and E is the electric field.
Capacitance per	$2\pi\epsilon_0$
unit length of a	Capacitance per unit length = $\frac{2 \ln c_0}{\ln \left(\frac{b}{a}\right)}$
cylindrical capacitor	Here, $\varepsilon_0^{}$ is the permittivity of free space, b is the radius of outer
	cylinder and a is the radius of inner cylinder.
Electric field	The formula for electric field intensity between the plates is
intensity	given as:
	$E = \frac{\sigma}{\varepsilon_0} = \frac{V}{d}$
	Here, σ is the surface charge density, V is the potential
	difference and d is the distance between plates.
	ALU
Redistribution of	Let us assume a capacitor with capacitance C_1 with initial
charge when two	charge Q_1 and capacitor with capacitance C_2 with initial charge
charged capacitors	
are connected in	Q_2 .
parallel	The final charge on capacitor with capacitance C_1 will be:
Shu	$Q'_{1} = \frac{C_{1}}{C_{1} + C_{2}} \left(Q_{1} + Q_{2} \right)$
	final charge on capacitor with capacitance C_2 will be:
	$Q_{2}' = \frac{C_{2}}{C_{1}+C_{2}}(Q_{1}+Q_{2})$
Equivalent	$\frac{1}{C_{11}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{2}} + \dots + \frac{1}{C_{n}}$
capacitance when	eq 1 2 5 n
capacitors are	Here, C_{eq} is the equivalent capacitance and C_1, C_2, C_3 are the
connected in series	capacitance of the capacitors.

Equivalent capacitance of the capacitors connected in parallel	$C_{eq} = C_1 + C_2 + C_3 + \dots C_n$
Charging of capacitor	$q = q_0 \left(1 - e^{-\frac{t}{\tau}} \right)$ Here, q is the charge on the capacitor at time t, τ is the time constant and q_0 is the charge on the capacitor at steady state.
Discharging of capacitor	$q = q_0 e^{-\frac{t}{\tau}}$ Here, q is the charge on the capacitor at time t, τ is the time constant and q_0 is the charge on the capacitor at steady state.

<u>Part 2</u>

Centre of Mass Formula	
The formula for centre of mass are as stated below	
Description	Formula
Centre of mass of a system with n number of masses situated on a line at different positions	The centre of mass of the system will be: $\vec{r_{cm}} = \frac{\left(m_1\vec{r_1} + m_2\vec{r_2} + m_3\vec{r_3} + + m_n\vec{r_n}\right)}{m_1 + m_2 + m_3 + + m_n}$ here, m_1, m_2, m_3 are the masses situated at $\vec{r_1}, \vec{r_2}, \vec{r_3}$ respectively.
Centre of mass of a system with n number of masses situated on a 2D plane	Let the masses m_1, m_2, m_3, m_n be placed at coordinates $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_n, y_n)$ So, we will find the centre of mass for x and y axis respectively using the formula: $r_x = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots + m_n x_n}{m_1 + m_2 + m_3 + \dots + m_n}$ $r_y = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3 + \dots + m_n y_n}{m_1 + m_2 + m_3 + \dots + m_n}$

	The control of mass of the system will be (w. w.)
	The centre of mass of the system will be: (r_x, r_y) .
Centre of mass of	The centre of mass of a uniform rectangular plate of length L and
a rectangular	breadth B is given as:
plate	$r_x = \frac{B}{2}$
	$r_y = \frac{L}{2}$
Centre of mass of	The centre of mass of a uniform triangular plate is given by the
a triangular plate	formula:
	$r_c = \frac{h}{3}$
	Where, h is the height of the plate.
Centre of mass of	The centre of mass of a semi-circular ring is given as:
a semi-circular	
	$r_y = \frac{2R}{\pi}$
ring	$r_r = 0$
	Here, R is the radius of the semi- Circle.
Centre of mass of	The centre of mass of a semi-circular disc is given as:
a semi-circular	-
disc	$r_y = \frac{4R}{3\pi}$
	$r_x = 0$
	Here, R is the radius of the semi- Circle.
Centre of mass of	The centre of mass of a hemispherical shell is given as:
a hemispherical	$r = \frac{R}{2}$
shell	y = 2 r = 0
	$r_x = 0$
alC	Here, R is the radius of the semi- Circle.
-112	
Centre of mass of	The centre of mass of a solid hemisphere is given as:
a solid	$r_{y} = \frac{3R}{8}$
hemisphere	
	$r_x = 0$
	Here, R is the radius of the hemisphere.
Countries of the first	
Centre of mass of	The centre of mass of a circular cone is given as:
a circular cone	$r_{v} = \frac{h}{4}$
	Here, h is the height of the cone.

Centre of mass of	The centre of mass of a hollow circular cone is given as: h	
a hollow circular cone	$r_y = \frac{h}{3}$	
	Here, h is the height of the cone.	
	Circular Motion	
The formula for circular	motion are as stated below	
Description	Formula	
Average angular	$\omega_{average} = \frac{\theta_2 - \theta_1}{t_2 - t_1}$	
velocity		
	Here, θ_2 is the angle at time t_1 , and θ_1 is the angle at time t_1 .	
Average angular	$\alpha_{av} = \frac{\omega_2 - \omega_1}{t_2 - t_1}$	
acceleration	2 1	
	Here, ω_2 is the angular frequency at time t_2 and ω_1 is the	
	angular frequency at time t_1 .	
Tangential	$a_t = \frac{dV}{dt}$	
acceleration	Here dV is the change in velocity over time dt .	
	$a_t = r \frac{d\omega}{dt}$	
	Here, r is the radius, $d\omega$ is the change in angular frequency over	
	time <i>dt</i> .	
Centripetal		
acceleration	$a_c = \frac{v^2}{r}$	
	or $a_c = \omega^2 r$	
	Here, v is the linear velocity, r is the radius and ω is the angular	
	frequency.	
Normal reaction	$N = mg\cos\cos\theta + \frac{mv^2}{r}$	
on a body moving	Here, m is the mass, g is the gravitational acceleration, θ is the	
on a concave bridge	angle, v is the linear velocity and r is the radius of the bridge.	
blidge		
Normal reaction	$N = mg\cos\cos\theta - \frac{mv^2}{r}$	
on a convex	1	
bridge	Here, m is the mass, g is the gravitational acceleration, θ is the angle, v is the linear velocity and r is the radius.	
Safe velocity of a		
vehicle on a level	$v_{safe} \leq \sqrt{\mu g r}$	
road	Here, v_{safe} is the safe velocity, μ is the coefficient of friction, g is	
	the gravitational acceleration and r is the radius.	

	2
Banking angle	$\tan \theta = \frac{v^2}{rg}$
	Here, θ is the banking angle, v is the linear velocity, r is the radius
	of the curve and g is the gravitational acceleration.
Centrifugal force	$f = m\omega^2 r$
	Here, f is the centrifugal force, m is the mass, ω is the angular
	velocity and r is the radius.
Conical pendulum	$T = 2\pi \sqrt{\frac{L\cos\theta}{a}}$
	Here, L is the length of the pendulum, θ is the angle made by the string with the vertical and g is the gravitational acceleration.
	De Broglie Wavelength Formula
The formula for de bro	glie wavelength are as stated below
Description	Formula
De Broglie	$\lambda = \frac{h}{m}$
wavelength	$\lambda = \frac{h}{mv}$ Or $\lambda = \frac{h}{\sqrt{2mKE}}$
	Here, λ is the de Broglie wavelength, h is the Plank's constant, m is the mass, v is the velocity, KE is the kinetic energy.
Radius of electron in	$r_n = \frac{n^2}{Z} a_0$
hydrogen like atoms	
	Here, r_n is the radius of n th orbit, a_0 is a constant whose value is
	$0.529 \times 10^{-10} m$ and z is the atomic number.
Speed of electron in	$v_n = \frac{z}{n} v_0$
hydrogen like atoms	Here, Z is the atomic number, n is the orbit and v_0 is a constant whose value is
0	$2.19 \times 10^{6} m/s.$
	2.17×10 m/s.
Energy in n th orbit	
Energy IIII OIDIL	$E = E \cdot \frac{z^2}{z}$
Lifergy in the Orbit	$E_n = E_1 \cdot \frac{z^2}{n^2}$
	Here, E_n is energy of the n th orbit, E_1 is the energy of the 1 st orbit and its value
Wavelength	Here, E_n is energy of the n th orbit, E_1 is the energy of the 1 st orbit and its value is -13.6 eV , Z is the atomic number and n is the number orbit.
Wavelength corresponding to	Here, E_n is energy of the n th orbit, E_1 is the energy of the 1 st orbit and its value
Wavelength	Here, E_n is energy of the n th orbit, E_1 is the energy of the 1 st orbit and its value is -13.6 eV , Z is the atomic number and n is the number orbit.
Wavelength corresponding to	Here, E_n is energy of the n th orbit, E_1 is the energy of the 1 st orbit and its value is - 13. 6 <i>eV</i> , Z is the atomic number and n is the number orbit. $\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$
Wavelength corresponding to	Here, E_n is energy of the n th orbit, E_1 is the energy of the 1 st orbit and its value is $-13.6 \ eV$, Z is the atomic number and n is the number orbit. $\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$ Here, λ is the wavelength, R is the Rydberg constant and its value is $1.097 \times 10^7 m^{-1}$. Values of n for different series.
Wavelength corresponding to	Here, E_n is energy of the n th orbit, E_1 is the energy of the 1 st orbit and its value is -13.6 eV , Z is the atomic number and n is the number orbit. $\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$ Here, λ is the wavelength, R is the Rydberg constant and its value is $1.097 \times 10^7 m^{-1}$.

	Paschim series: $n_1 = 3$; $n_2 = 4, 5, 6,$
	1 2
Minimum	$\lambda_{\min} = \frac{hc}{eV_0}$
wavelength for x	0
rays	Or $\lambda_{min} = \frac{12400}{V_0} \times 10^{-10} m$
	here, λ_{min} is the minimum wavelength, h is the plank's constant, c is the speed
	of light, e is the charge of an electron and V_0 is the accelerating voltage.
Radius of nucleus	$R = R_0 A^{1/3}$
	Here, R is the radius of the atom, R_0 is a constant whose value is $1.1 \times 10^{-15} m$
	, A is the mass number of the atom.
Number of nuclei	$N = N_0 e^{-\lambda t}$
during a radioactive	-
decay	here, N is the number of nuclei at time t, N_0 is the initial number of nucleus
	and λ is the decay constant.
Half-life of a	$T_{1/2} = \frac{0.693}{\lambda}$
radioactive sample	
	Here, $T_{1/2}$ is the half-life period and λ is the decay constant.
Average life	T <u>1</u>
	$T_{av} = \frac{T_{\frac{1}{2}}}{0.693}$
	here, T_{av} is the average life and $T_{1/2}$ is the half- life period.

<u>Part 3</u>

	here, T_{av} is the average life and $T_{1/2}$ is the half- life period.
<u>Part 3</u>	MaHalka
Current Electricity The formula for current electricity are as stated below	
21-	·
Description	Formula
21-	Formula

	Here, n is the number of free electrons, A is the area of conductor, e is the charge of an electron, V_d is the drift
	velocity, λ is the linear charge density and τ is the
	relaxation time.
Potential difference	V = IR
using ohm's law	Here, V is the potential difference, I is the current flowing
	through the conductor and R is the resistance offered by
	the conductor.
Resistance in terms	$R = \frac{\rho l}{A}$
of resistivity	11
····,	Here, ρ is the resistivity of the material of the conductor, I
	is the length of the conductor and A is the area of cross
	section of the conductor.
Change in	$R = R_0 (1 + \alpha \Delta T)$
resistance due to temperature	Here, R is the resistance, R_0 is the initial temperature, α is
	the temperature coefficient of the resistivity and ΔT is the
	change in temperature.
Electric power	P = VI
	Here, P is the power, V is the potential difference and I is
	the current.
	Also,
	$P = I^2 R$
	\mathbf{P} V^2
	$P = \frac{1}{R}$
Heat energy	H = VIt
released due to	also
current	$H = I^2 R t$
110	$H = \frac{V^2}{R}t$
SAV	A
0-	Here, H is the heat released in joules, V is the potential
	difference, R is the resistance, I is the current and t is the
	total time the current was flowing through the conductor.
Equivalent	$R_{eq} = R_1 + R_2 + R_3 + \dots + R_n$
resistance when	Here, R_{eq} is the equivalent resistance, R_1 , R_2 , R_3 are the
resistors are	resistance of the resistors.
connected in series	
Equivalent	
resistance when	$\left \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n} \right $

• •	Τ
resistors are	
connected in	
parallel	
Potential difference	$\left(\frac{\varepsilon}{1}+\frac{\varepsilon}{2}+\frac{\varepsilon}{3}++\frac{\varepsilon}{n}\right)$
when cells are	$E_{eq} = \frac{\left(\frac{c_1}{r_1} + \frac{c_2}{r_2} + \frac{c_3}{r_3} + \dots + \frac{c_n}{r_n}\right)}{\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_2} + \dots + \frac{1}{r_n}}$
connected in	1 2 5 h
parallel	Here, ε_1 , ε_2 , ε_3 are the emf of the cells and r_1 , r_2 , r_3 are
•	the internal resistance of the cells.
Ammeter using	To measure the maximum current I using a galvanometer,
galvanometer	we need to connect a shunt resistance in parallel with the
gaivanonietei	galvanometer.
	The value of the resistance is calculated as:
	$S = \frac{I_{g}R_{g}}{I}$
	Here, S is the value of shunt resistance, I_g is the current
	through galvanometer, R_{g} is the resistance of the
	galvanometer and I is the maximum current to be
	measured.
Voltmeter using	To measure a potential difference using a galvanometer,
galvanometer	we need to connect a series resistance with it.
-	The value of the resistance that needs to be connected is:
	$R_{s} = \frac{V}{I} - R_{q}$
	Here, V is the maximum potential difference to be
	measured, I_a is the current through galvanometer and R_a
	is the resistance of the galvanometer.
1105	
	Electric Current Formula

Electric Current Formula

The formula for electric current are as stated below

Description	Formula
Electric current	I = q/t = ne/t Where I= strength of current; q-charge; t- time
	where i = strength of current, q charge, t time
Resistance	$R = \frac{V}{i}$ and
	Conductance $G = \frac{I}{R}$
	Where
	V – potential difference,

	i - current,
	$R = \frac{\rho l}{A} = \frac{\rho l}{\pi r^2}$
	Where, $R - Resistance fo the wire;$
	$\rho - Resistivity$,
	l - length of the wire,
	A - area of cross section of the wire
Variation of resistance	$R_{T} = R_{\circ}[1 + \alpha(t)]$
with the temperature	1
	$\rightarrow \alpha = \frac{R_{t-}R_{\circ}}{R_{\circ}(t)} l^{\circ}C$
	$\alpha = \frac{\left(R_1 - R_2\right)}{R_1\left(t_2 - t_2\right)} l^{\circ}C$
	$\alpha = \frac{1}{R_1(t_2 - t_1)} t C$
	Here,
	R = resistance at temperature $t^{\circ}C$
	R_{\circ} = resistance at temperature 0°C
	α = temperature coefficient of resistance
Conductivity	Reciprocal of resistivity.
	$\sigma = \frac{1}{\rho}$
	Where σ -conductivity, ρ -resistivity
Terminal voltage	Case-1: When battery is delivering current
	$V = E - ir or i = \frac{E}{B+r}$
	Where
	V -terminal P.d, E - emf of the cell, r -internal resistance of the cell, $R - $
	external resistance.
	0.120
	Case 2: when battery is charging
	V = E + ir
Kirchhoff's laws	Kirchhoff's First laws:
	$\sum i = 0$ at any junction.
	$\sum i = 0$ at any junction.
	$\sum i = 0$ at any junction. Kirchhoff's second law:
101	Kirchhoff's second law:
TAS	
Metre Bridge	Kirchhoff's second law: $\sum iR = 0$ in a closed circuit.
Metre Bridge	Kirchhoff's second law: $\Sigma iR = 0$ in a closed circuit. 1. $\frac{x}{R} = \frac{l_1}{l_2} \Rightarrow \frac{x}{R} = \frac{l_1}{(100-l_1)}$
Metre Bridge	Kirchhoff's second law: $\sum iR = 0$ in a closed circuit.1. $\frac{x}{R} = \frac{l_1}{l_2} \Rightarrow \frac{x}{R} = \frac{l_1}{(100-l_1)}$ Where x - unknown resistance of given wire, R-resistance in the
Metre Bridge	Kirchhoff's second law: $\sum iR = 0$ in a closed circuit.1. $\frac{x}{R} = \frac{l_1}{l_2} \Rightarrow \frac{x}{R} = \frac{l_1}{(100-l_1)}$ Where x - unknown resistance of given wire, R-resistance in the resistance box, l_1 -balancing length from left end of the bridge to Jockey.
Metre Bridge	Kirchhoff's second law: $\sum iR = 0$ in a closed circuit.1. $\frac{x}{R} = \frac{l_1}{l_2} \Rightarrow \frac{x}{R} = \frac{l_1}{(100-l_1)}$ Where x - unknown resistance of given wire, R-resistance in the
Metre Bridge	Kirchhoff's second law: $\sum iR = 0$ in a closed circuit.1. $\frac{x}{R} = \frac{l_1}{l_2} \Rightarrow \frac{x}{R} = \frac{l_1}{(100-l_1)}$ Where x - unknown resistance of given wire, R-resistance in the resistance box, l_1 -balancing length from left end of the bridge to Jockey.
Metre Bridge	Kirchhoff's second law: $\sum iR = 0 \text{ in a closed circuit.}$ 1. $\frac{x}{R} = \frac{l_1}{l_2} \Rightarrow \frac{x}{R} = \frac{l_1}{(100 - l_1)}$ Where x - unknown resistance of given wire, R-resistance in the resistance box, l_1 -balancing length from left end of the bridge to Jockey. 2. $\rho = \frac{xA}{l} = x \frac{\pi r^2}{l}$
Metre Bridge	Kirchhoff's second law: $\sum iR = 0 \text{ in a closed circuit.}$ 1. $\frac{x}{R} = \frac{l_1}{l_2} \Rightarrow \frac{x}{R} = \frac{l_1}{(100-l_1)}$ Where x - unknown resistance of given wire, R-resistance in the resistance box, l_1 -balancing length from left end of the bridge to Jockey. 2. $\rho = \frac{xA}{l} = x \frac{\pi r^2}{l}$ Where ρ -Resistivity of the wire,
Metre Bridge	Kirchhoff's second law: $\sum iR = 0 \text{ in a closed circuit.}$ 1. $\frac{x}{R} = \frac{l_1}{l_2} \Rightarrow \frac{x}{R} = \frac{l_1}{(100-l_1)}$ Where x - unknown resistance of given wire, R-resistance in the resistance box, l_1 -balancing length from left end of the bridge to Jockey. 2. $\rho = \frac{xA}{l} = x \frac{\pi r^2}{l}$ Where ρ -Resistivity of the wire, x -resistance of wire,
511-	Kirchhoff's second law: $\sum iR = 0 \text{ in a closed circuit.}$ 1. $\frac{x}{R} = \frac{l_1}{l_2} \Rightarrow \frac{x}{R} = \frac{l_1}{(100-l_1)}$ Where x - unknown resistance of given wire, R-resistance in the resistance box, l_1 -balancing length from left end of the bridge to Jockey. 2. $\rho = \frac{xA}{l} = x \frac{\pi r^2}{l}$ Where ρ -Resistivity of the wire, x -resistance of wire, A - area of cross section of the wire, l -length of the wire.
Metre Bridge Potentio Meter	Kirchhoff's second law: $\sum iR = 0 \text{ in a closed circuit.}$ 1. $\frac{x}{R} = \frac{l_1}{l_2} \Rightarrow \frac{x}{R} = \frac{l_1}{(100 - l_1)}$ Where x - unknown resistance of given wire, R-resistance in the resistance box, l_1 -balancing length from left end of the bridge to Jockey. 2. $\rho = \frac{xA}{l} = x \frac{\pi r^2}{l}$ Where ρ -Resistivity of the wire, x -resistance of wire, A - area of cross section of the wire,

	E. l.
	1. Comparison of emf's of two cells: $\frac{E_1}{E_2} = \frac{l_1}{l_2}$
	Where E_1 and E_2 -emf of the first and second cell, l_1 and l_2 - the balancing lengths of individual cells respectively. 2. $r = \frac{R(l_1 - l_2)}{l_2}$
E	electromagnetic Induction Formula
The formula for electroma	gnetic induction are as stated below
Description	Formula
Magnetic Flux	The magnetic flux through a plane of area dA placed in a uniform magnetic field B is given as
	$\phi = \int \vec{B} \cdot d\vec{A}$
	When the surface is closed, then magnetic flux will be zero. This is due to magnetic lines of force are closed lines and free magnetic poles is not exist
Electromagnetic Induction: Faraday's Law	First Law : Whenever magnetic flux linked with a circuit changes with time, an induced emf is generated in the circuit that lasts as long as the change in magnetic flux continues. Second Law: According to this law, the induced emf is equal to the negative rate of change of flux through the circuit. $E = -\frac{d\Phi}{dt}$
Lenz's Law	The direction of induced emf or current in the circuit is in such a way that it opposes the cause due to which it is produced. Therefore, $E = -N(\frac{d\Phi}{dt})$
Induced emf	Induced emf is given as $E = -N(\frac{d\phi}{dt})$ $E = -N(\frac{\phi_1 - \phi_2}{t})$
Induced Current	Induced Current is given as
21-	$I = \frac{E}{R} = \frac{N}{R} \left(\frac{d\phi}{dt}\right) = \frac{N}{R} \left(\frac{\phi_1 - \phi_2}{t}\right)$
Self - Induction	Change in the strength of flow of current is opposed by a characteristic of a coil is known as self-inductance. It is given as $\phi = LI$ Here, L = coefficient of self - inductance Magnetic flux rate of change in the coil is given as $\frac{d\phi}{dt} = L\frac{dl}{dt} = -E$
Mutual - Induction	Mutual – Induction is given as $e_2 = \frac{d(N_2 \phi_2)}{dt} = M \frac{dl_1}{dt}$

Therefore,
$M = \frac{\mu_0 N_1 N_2 A}{l}$

<u>Part 4</u>

Electromagnetic Induction Formula		
The formula for electroma	The formula for electromagnetic induction are as stated below	
Description	Formula	
Magnetic Flux	The magnetic flux through a plane of area dA placed in a uniform magnetic field B is given as	
	$\Phi = \int \vec{B} \cdot d\vec{A}$	
	When the surface is closed, then magnetic flux will be zero. This is due to magnetic lines of force are closed lines and free magnetic poles is not exist	
Electromagnetic Induction: Faraday's Law	First Law : Whenever magnetic flux linked with a circuit changes with time, an induced emf is generated in the circuit that lasts as long as the change in magnetic flux continues. Second Law: According to this law, the induced emf is equal to the negative rate of change of flux through the circuit. $E = -\frac{d\Phi}{dt}$	
Lenz's Law	The direction of induced emf or current in the circuit is in such a way that it opposes the cause due to which it is produced. Therefore, $E = -N(\frac{d\phi}{dt})$	
Induced emf	Induced emf is given as	
CHOS!	$E = -N(\frac{d\phi}{dt})$ $E = -N(\frac{\phi_1 - \phi_2}{t})$	
Induced Current	Induced Current is given as $I = \frac{E}{R} = \frac{N}{R} \left(\frac{d\phi}{dt}\right) = \frac{N}{R} \left(\frac{\phi_1 - \phi_2}{t}\right)$	
Self - Induction	Change in the strength of flow of current is opposed by a characteristic of a coil is known as self-inductance. It is given as $\phi = LI$ Here, L = coefficient of self - inductance Magnetic flux rate of change in the coil is given as $\frac{d\phi}{dt} = L\frac{dl}{dt} = -E$	
Mutual - Induction	Mutual – Induction is given as $e_2 = \frac{d(N_2 \Phi_2)}{dt} = M \frac{dl_1}{dt}$	

	Therefore,	
	$M = \frac{\mu_0 N_1 N_2 A}{l}$	
	Electromagnetic Waves	
The formula for electroma	The formula for electromagnetic waves are as stated below	
Description	Formula	
Gauss's law for electricity	$\oint E \cdot dA = \frac{Q}{\varepsilon_0}$	
	Here, E is the electric field, A is the area, Q is the charge and $\epsilon_0^{}$ is the permittivity of free space.	
Gauss's law for magnetism	$\oint B \cdot dA = 0$	
	<i>B</i> is the magnetic field and A is the area.	
Faraday's law	$\oint E \cdot dl = -\frac{d\Phi_B}{dt}$	
	Here, E is the electric field, I is the length of the conductor, $\Phi_{_B}$ is the magnetic flux and t is the time.	
Ampere- Maxwell law	$\oint B \cdot dl = \mu_0 i + \mu_0 \varepsilon_0 \frac{d\Phi_B}{dt}$	
	Here, B is the magnetic field, I is the length of the conductor, μ_0 is permeability of free space, <i>i</i> is the current	
	flowing through the conductor, ε_0 is the permittivity of	
act	free space, Φ_{B} is the magnetic flux and t is the time.	
Speed of light in vacuum	$c = 1/\sqrt{\mu_0 \varepsilon_0}$	
	Electrostatics Formula	
The formula for electrostat	istics are as stated below	
Description	Formula	
Electrostatic force between two-point charges	$\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{\left \vec{r}\right ^2} \hat{r}$	

	Here, ε_0 is the permittivity of free space, $q_1 q_2$ are the point charges and r
	is the distance between the charges.
Electric field	$\vec{E} = \frac{\vec{F}}{q_0}$
	Here, \vec{F} is the electrostatic force experienced by test charge q_0 .
Electric field due to a	$E_{axis} = \frac{KQx}{(R^2 + x^2)^{\frac{3}{2}}}$
uniformly charged ring	
	Here, K is the relative permeability, Q is the charge on the ring, x is the perpendicular distance from the ring to the point at which the electric field is to be calculated and R is the radius of the ring.
Electric field due to a uniformly charged disc	$E = \frac{\sigma}{2\varepsilon_0} \left[1 - \frac{x}{\sqrt{R^2 + x^2}} \right]$
	Here, σ is the surface charge density, $\epsilon_0^{}$ is the permittivity of free space, x
	is the perpendicular distance from the centre of the disk and R is the radius of the disk.
Work done by external	The work done by an external force in bringing a charge q from potential
force	V_B to V_A is:
	$W = q \left(V_A - V_B \right)$
Electrostatic potential	U = qV
energy	Here, q is the charge and V is the potential.
Electrostatic energy	$U = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$
	here $q_1 q_2^{'}$ are the charges and r is the distance between the charges.
Electric potential at a point due to a point	$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$
charge Dinole moment	The formula for calculating electric dipole moment is
Dipole moment	\rightarrow \rightarrow
	p = qd Here q is the magnitude of the charge and d is the distance between the
.01	charges.
Potential at a point due to dipole	The potential at a point due to a dipole is given as: $V = \frac{1}{4\pi\epsilon_0} \frac{p \cos \theta}{r^2}$
	Here, p is the dipole moment and θ is the angle made by the line joining
	the point and the centre of the dipole with the line joining the charges and r is the distance from the point at which the potential is to be calculated and the line joining the charges.
Torque experienced by	$\vec{\tau} = \vec{p} \times \vec{E}$
dipole due to electric field	$\tau = p \times E$ here, \vec{p} is the dipole moment and \vec{E} is the electric field.

Friction Formula

The formula for friction are as stated below

Description	Formula
Force due to kinetic friction	The formula for calculating the force due to kinetic friction is: $F_{k} = \mu_{k}R$
	here, F_k is the force due to kinetic friction, μ_k is the coefficient of kinetic friction and R is the normal reaction force on the body on which the force is acting. If the body is lying on levelled plane, then the normal force is given as: R = mg Here m is the mass and g is the gravitational acceleration. When the body is lying on a plane that is at some angle θ with the horizontal then the normal reaction force on the body is given as: $R = mgcos \theta$
Force due to static friction	The formula for calculating the force due to static friction is: $F_s = \mu_s R$
	here, F_s is the force due to static friction, μ_s is the coefficient of static friction and R is the normal reaction force on the body.

Linear Momentum Formula

The formula for linear momentum are as stated below

Description	Formula
Linear Momentum	p = mv
	p is linear momentum, m is mass and v is velocity

Conservation of	$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$
momentum	Where
	P = Momentum,
	m = Mass and
	u,v= velocity
Elastic Collision	$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$ Where i = initial and f = final
Inelastic collision	$m_1 v_{1i} + m_2 v_{2i} = (m_1 + m_2) v_{2f}$
Force (from Newton's	$F = m \times a$
second law)	$F_{net} = \frac{dp}{dt}$
Momentum in terms of	p = mv
kinetic energy	$p^2 = m^2 v^2$
	$p^2 = 2m(\frac{1}{2}mv^2)$
	$p^2 = 2mK$
	Here, K = kinetic energy
Dimensional Formula of Momentum	$[M^1L^1T^{-1}]$
	Geometrical Optics Formula
The formula for geometric	al optics are as stated below
Description	Formula

Description	Formula
Laws of Reflection of	The incident ray, refracted ray, and normal always lie on the same plane.
light	Snell's law
- 1 -	According to the Snell's law
CHUS	$\frac{\sin i}{\sin r} = constant$
21-	Here,
	i = angle of incidence
	r = angle of reflection
Relative refractive index	The Relative refractive index is given as
	$n = \frac{c}{v}$
	here,
	n = refractive index
	c = speed of light in vacuum
	v = speed of light in medium

Conduction	Rate of flow of heat in conduction is determined as
	$\frac{dQ}{dt} = - KA \frac{dT}{dx}$
	• K = thermal conductivity
	• A = area of cross-section
	 dx = thickness
	 dT = temperature difference
Newton's law	$\frac{d\theta}{dt} = (\theta - \theta_0)$
of cooling	• Here,
	• θ and θ_0 = temperature corresponding to object and surroundings.
	0
Temperature	$F = 32 + \frac{9}{5} \times C$
scales	K = C + 273.16
	• F = Fahrenheit scale
	• C = Celsius scale
	• K = Kelvin scale
Ideal Gas	PV = nRT
equation	• Here,
	n = number of moles
	 n = number of moles P = pressure V = Volume T = Temperature
	• V = Volume
	• T = Temperature
	, MIL TH
Van der Waals equation	$(p + a(\frac{n}{V})^2)(V - nb) = nRT$
cHC	• $a(\frac{n}{V})^2$ = correction factor for intermolecular forces
21-	• nb = correction factor for molecule size
	• n = number of moles
	• T = Temperature
	• V = Volume
	• p = pressure
Thermal	Linear Expansion
expansion	
	$L = L_0(1 + \alpha \Delta T)$

	Area Expansion		
		$A = A_0 (1 + \beta \Delta T)$	
	Volume Expansion	0	
		$V = V(1 + \gamma \Delta T)$	
Relation		αβν	
between α , β and y for the isotropic solid		$\frac{\alpha}{1} = \frac{\beta}{2} = \frac{\gamma}{3}$	
Stefan-	$u = \sigma A T^4$ (Perfect bl	ack body)	
Boltzmann's law	$u = e\sigma AT^4$ (Not a pe		
	• here,		
	• σ = Stefan's con	stant = 5.67 $\times 10^{-8}$ watt / $m^2 K^4$	
	• $\frac{u}{A}$ = energy flux		
	• e = emissivity		
Thermal	Thermal resistance is g	iven as	
resistance to		$R = \frac{L}{KA}$	
conduction	 K = material's conductivity 		
	 L = plane thickn 	ess	
	• A = plane area	PKO	
	Hooke's L	aw Formula	
The formula for H	looke's law are as stated below		
-11	Description	Formula	
Formula for Hool	ke's Law	F = -kx	
0-		Where F = force, k = constant and x = displacement	
		Note: Hooke's law can be expressed in the form	
		of stress and strain.	
According to Hoc	ke's law	Stress ∝ Strain	
		That is, Stress = K×Strain	
		Where K is the proportionality constant	
Formula for Stres	S	$Stress(\sigma) = F/A$	
		Where,	

	F is the restoring force, and A is the cross-section area
Formula for Strain	Strain (ε) = $\Delta L/L$ Where, ΔL = Change in length and L = original length
SI unit of Stress	N/m^2
Young's Modulus (Y)	$Y = \frac{Tensile \ stress}{Tensile \ Strain}$ $Y = \frac{F_l/A}{\Delta l/l}$
Shear Modulus	$Y = \frac{Shearing stress}{Shearing Strain}$ $Y = \frac{F_l/A}{\Delta x/h}$

Inductance Formula

The formula for inductance are as stated below

Description	Formula
Inductance	$L=\mu N^{2}A/l$ Where $L - \text{ inductance in Henry(H)}$ $\mu - \text{ permeability } (Wb/A. m)$ $N - \text{ number of turns in the coil}$ $A - \text{ area encircled by the coil}$ $l - \text{length of coil(m)}$
Induced voltage in a coil (V)	The voltage induced in a coil (V) with an inductance of L is given by V=L di/dt Where, V = voltage(volts) L - inductance value(H) i -the current is(A) t -time taken (s)
Reactance of inductance	The reactance of inductance is given by: $X=2\pi fL$ Where, Reactance is X in ohm The frequency if f in Hz Inductance is L in Henry(H)
Magnetic Flux	The magnetic flux through a plane of area <i>dA</i> placed in a uniform magnetic field B is given as

	$\varphi = \int \vec{B} \cdot d\vec{A}$ When the surface is closed, then magnetic flux will be zero. This is due to magnetic lines of force are closed lines and free magnetic poles is not exist
Induced Current	Induced Current is given as
	$I = \frac{E}{R} = \frac{N}{R} \left(\frac{d\phi}{dt}\right) = \frac{N}{R} \left(\frac{\phi_1 - \phi_2}{t}\right)$
Mutual - Induction	Mutual – Induction is given as
	$e_2 = \frac{d(N_2 \phi_2)}{dt} = M \frac{dl_1}{dt}$
	Therefore,
	$M = \frac{\mu_0 N_1 N_2 A}{l}$

<u>Part 6</u>

	Faraday's Law Formula
	The formula for Faraday's law are as stated below
Description	Formula
Faraday's first law	The first law of Faraday's electromagnetic induction explains that when a wire is kept in a field that experiences a constant change in its magnetic field, then an electromagnetic field is developed. This phenomenon of development of the electromagnetic field is called an induced emf.
Faraday's second law	 It states that the emf induced in a conductor is equivalent to the rate at which the flux is linked to the circuit changes. <i>ε=-dφ/dt</i> Where, <i>ε</i> = the emf or electromotive force <i>φ</i> = the magnetic flux If there are N number of turns in the coil then the total magnetic induction in a coil is represented as

	$\varepsilon = -N d\phi/dt$
Magnetic flux	It is the integral (sum) of all of the magnetic fields passing through infinitesimal area elements dA .
	$\Phi_{B} = \int \vec{B} \cdot d\vec{A}$
The magnetic flux through a surface	The component of the magnetic field passing through that surface. The magnetic flux through some surface is proportional to the number of field lines passing through that surface. The magnetic flux passing through a surface of vector area A is $\Phi_B = B \cdot A = BA \cos\theta$
Lenz's Law	The direction of induced emf or current in the circuit is in such a way that it opposes the cause due to which it is produced. Therefore, $E = -N\left(\frac{d\Phi}{dt}\right)$
Induced emf	Induced emf is given as $E = -N(\frac{d\phi}{dt})$
Magnetic Flux	$E = -N(\frac{\Phi_1 - \Phi_2}{t})$ The magnetic flux through a plane of area <i>dA</i> placed in a uniform magnetic field B is given as
	mechanics & Properties of Matter Formula
Description	Formula
Pressure	$P = \frac{F}{A}$ For hydraulic press: $F = \frac{A}{a}f$ Here, P is the pressure, F is the force applied on bigger piston with area A and f is the force on the smaller piston with area a.
Angle made by liquid surface when the container	$tan \theta = \frac{a_0}{g}$ here, θ is the angle made by the liquid surface with the horizontal, a_0 is the acceleration of the container and g is the gravitational
experiences an acceleration	acceleration.

	$a_1 v_1 = a_2 v_2$
	here, $a_1 v_1$ are the area of cross section and velocity of fluid at
	section 1 and $a_2 v_2$ are the area of cross section and velocity of
	the fluid at section 2.
Bernoulli's equation	According to Bernoulli's equation the total energy of liquid flowing through a tube is constant throughout the tube.
	$\frac{P}{\rho g} + \frac{v^2}{2g} + Z = constant$
	Here, P is the pressure, ρ is the density of the fluid, g is the gravitational acceleration, v is the velocity of the fluid and Z is the potential head.
	The term $\left(\frac{P}{\rho g}\right)$ is called pressure head, $\left(\frac{v^2}{2g}\right)$ is called velocity or
	kinetic head and Z is called the potential head.
Speed of efflux	$v = \sqrt{\frac{2gh}{1 - \frac{A_2^2}{r^2}}}$
	γ A_1 Here, v is the velocity, g is the gravitational acceleration, h is the
	height, A_2 is the area of hole and A_1 is the area of the vessel.
Stress	$\sigma = \frac{F}{A}$
Strain	here, σ is the stress, F is the force and A is the area. $\varepsilon = \frac{\Delta L}{L}$
	L
	here, ϵ is the strain, ΔL is the change in length, and L is the initial length.
Young's modulus	$F = \frac{\sigma}{2}$
	L = ε Or
-103	$E = \frac{FL}{A\Delta L}$
CHU	here, E is the young's modulus, F is the force, L is the initial length,
01-	A is the area of cross section and ΔL is the change in length.
Stoke's law	$F = 6\pi\eta rv$
	Here, F is the drag experienced by the sphere, r is the radius of the
	sphere, η is the viscosity of the fluid and v is the velocity of the
	sphere.
Terminal velocity	$v = \frac{2}{9} \left(\frac{r^2(\rho - \sigma)g}{\eta} \right)$

	Here, r is the radius of the sphere, ρ is the density of the sphere, σ is the density of the fluid, g is the gravitational acceleration and η is the viscosity of the fluid.
	Magnetic Effect of Current Formula
The formula for magne	etic effect of current are as stated below
Description	Formula
Magnetic field due to a moving point charge	Magnetic field due to a moving point charge is given as $\vec{B} = \frac{\mu_0 q(\vec{v} \times \vec{r})}{4\pi r^3}$ $\mu_0 = \text{permeability of free space}$
Biot Savart's Law	$dB \propto \frac{1 \cdot dl \cdot \sin \theta}{r^2}$
Magnetic field due to a straight wire	The magnetic field due to a straight wire is given as $B = \frac{\mu_0 l}{4\pi r} (sin\theta_1 + sin\theta_2)$

Magnetic Moment of	M = NIA
a current carrying	
Іоор	
The torque acting on	$\vec{\tau} = \vec{M} \times \vec{B}$
a loop	$t - M \times D$
Magnetic field due to	$p = \mu_0 m$
single pole	$B = \frac{\mu_0 m}{2\pi r^2}$
Magnetic field on the	$B = \frac{\mu_0 2M}{2}$
axis of the magnet	$B = \frac{1}{4\pi r^3}$
Magnetic field on the	$\mu_0 M$
equatorial axis of the	$B = \frac{\mu_0 M}{4\pi r^3}$
magnet	
Magnetic field at the	$B = \frac{\mu_0 M}{[c/(1 + cos^2)]}$
point P of the	$B = \frac{\mu_0 M}{4\pi r^3} \left[\sqrt{(1 + \cos^2 \theta)} \right]$
magnet	
5	

<u>Part 7</u>

	Wave Formula Part 1	4
Electromagnetic	wave equations are given as below	U
Description	Formula	
Gauss's Law for electricity	$\oint E.da = \frac{Q}{\epsilon_0}$	
Gauss's Law for Magnetism	$\oint B.dA=0$	
Faraday's Law	$\oint E.dl = -\frac{d\Phi}{dt}$	
Ampere-Maxw ell Law	$\oint B.dl = \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}$	
Speed of Light in Vacuum	$c = rac{1}{\sqrt{\mu_0 \epsilon_o}}$	

Speed of light in medium	$v = \frac{1}{\sqrt{\mu\epsilon}}$	
Relation between Electric and Magnetic field	$\frac{E_0}{B_0} = c$	
	Wave Formula 2	
The formula for	wave are as stated below	
Description	Formula	
General Equation of Wave Motion	$\frac{\partial^2 y}{\partial t^2} = v^2 \frac{\partial^2 y}{\partial x^2}$	
Wave number	$k = \frac{2\pi}{\lambda} = \frac{\omega}{v} (rad m^{-1})$	
Phase of a Wave	It is the difference in phases of two particles at any time t. $\Delta \phi = \frac{2\pi}{\lambda} \Delta x$	
Speed of Transverse Wave Along a String / Wire	$v = \sqrt{\frac{T}{\mu}} where T = Tension$ $\mu = mass per unit length$	C
Power Transmitted Along The String By a Sine Wave	Average Power (P) $P = 2\pi^{2} f^{2} A^{2} \mu v$ $v = velocity$ Intensity	
51-	$I = \frac{P}{s} = 2\pi^2 f^2 A^2 \rho v$ $\epsilon = A \sin(\omega t - kx)$	
Longitudinal Displacement of Sound Wave	$e - A \sin(\omega t - \kappa x)$	
Pressure Excess during travelling sound wave	$P_{ex} = -B \frac{\partial \epsilon}{\partial x}$ = (B) Cos (\omega t - kx) Where B is the Bulk Modulus P_{ex} is the excess pressure	

Croad of		
Speed of Sound	$C = \sqrt{\frac{E}{2}}$	
300110	Here, E is elastic modulus	
	ρ is the density of medium	
Loudness of	$10\left(\frac{I}{I_0}\right) dB$	
Sound		
Intensity at a	$I = \frac{P}{4\pi r^2}$	
distance r from	$4\pi r^{-}$	
a point Source		
Interference of	$P_{1} = P_{m1} Sin(\omega t - kx_{1} + \theta_{1})$	
Sound Wave	$P_2 = P_{m2} Sin(\omega t - kx_2 + \theta_2)$	
	The Result is the sum of all the pressure.	
	$P_{0} = \sqrt{p_{m_{1}}^{2} + p_{m_{2}}^{2} + 2p_{m_{1}}^{P}P_{m_{2}}\cos\phi}$	
For	$\phi = 2\pi n \text{ then,} \Rightarrow P_o = P_{m_i} + P_{m_o}$	
constructive	$b m_1 m_2$	
Interference		
For destructive	$\phi = (2n + 1)\pi and => P_o = P_{m_1} - P_{m_2} $	
interference		
Close Organ	$f = \frac{v}{4l}, \frac{3v}{4l}, \frac{5v}{4l}, \dots, \frac{(2n+1)v}{4l}$	1
Pipe		
Open organ pipe	$f = \frac{v}{2l}, \frac{2v}{2l}, \dots, \frac{nV}{2l}$	
Beats	Beats Frequency= $f_1 - f_2$	
Doppler's Law	The Observed Frequency,	
	$f' = f\left(\frac{v - v_0}{v - v_s}\right)$	
10	$J = J \left(\frac{v - v_s}{v} \right)$	
CHU	Apparent Wavelength,	
212	$\lambda' = \lambda(\frac{v - v_s}{v})$	
	Wave Optics Formula	
The formula for	wave optics are as stated below	
Description	Formula	
The path	$\Delta d = d_2 - d_1$	
difference of	Δd is the path difference	
	· · · · · · · · · · · · · · · · · · ·	

two cohoront		1
two coherent		
Waves		
The Path	$\Delta d = k . \lambda$	
difference of	$\Delta d = \kappa \kappa$ Δd is path difference	
two coherent	· ·	
	λ is the wavelength	
waves: Interference		
Maximum		
The path	$\Delta d = \frac{(2.k+1).\lambda}{2}$	
difference of	1	
two coherent	Δd is path difference	
waves:	λ is the wave length	
Interference		
Minimum		
winningin		
Thin-film	$2nt\cos r = (n + 1/2)\lambda$	
interference:	t is film thickness	
Constructive	n is refractive index	
(maximum)	r is refraction angle	
, ,	λ is wave length	2
		U.
Thin-Film	$2ntcosr = n\lambda$.	1
interference:	t is film thickness	
destructive	n is refractive index	
(minimum)	r is refraction angle	
	λ is wave length	
- 01	SHU	
Radii of	$r = \sqrt{k. R. \lambda}$ or $r = \frac{\sqrt{((2.k+1).R.\lambda)}}{2}$	
Newton's Ring	r is the radius	
	R is the radius of curvature	
	λ is the wavelength	
Light	$l = \frac{d^2}{4\lambda}$	
Diffraction		
	I is the distance from obstacle	
	d is the obstacle size	
	λ is wavelength	
		J

grating: maximum (bright stripes)d is the lattice constant θ is the diffraction angle λ is the wavelengthDiffraction grating (dark stripes) $dsin\theta = (K + 1/2)\lambda$ d is the lattice constant ϕ is the diffraction angle λ is the wavelengthWork Power and Energy FormulaThe formula for work power energy are as stated belowDescriptionFormula W = F×d F is the force d is the displacementKinetic Energy $W = F \times d$ F is the force d is the displacementKinetic Energy $P. E = mgh$ m is the mass of the body. v is the velocity of the body h is the height of the body in kg h is the height of the body in kg h is the height of the body in kg h is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Power $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$		
maximum (bright stripes) θ is the diffraction angle λ is the wavelengthDiffraction grating (dark stripes) $dsin\theta = (K + 1/2)\lambda$ Diffraction grating (dark stripes) d is the lattice constant ϕ is the diffraction angle λ is the wavelengthWork Power and Energy FormulaThe formula for work power energy are as stated belowDescriptionFormulaWork done is given by $W = F \times d$ F is the force d is the displacementKinetic Energy $R.E = \frac{1}{2}mv^2$ m is the mass of the body. v is the velocity of the bodyPotential Energy $P.E = mgh$ m is the mass of the body in kg h is the height of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$	Diffraction	$dsin\theta = k\lambda$
(bright stripes) λ is the wavelengthDiffraction grating (dark stripes) $dsin\theta = (K + 1/2)\lambda$ d is the lattice constant ϕ is the diffraction angle λ is the wavelengthWork Power and Energy FormulaThe formula for work power energy are as stated belowDescriptionFormulaWork done is given by $Kinetic$ Energy $K.E = \frac{1}{2}mv^2$ m is the displacementKinetic Energy $P.E = mgh$ m is the mass of the body. v is the velocity of the bodyPotential Energy $P.E = mgh$ m is the mass of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$		
Diffraction grating (dark stripes) $dsin\theta = (K + 1/2)\lambda$ d is the lattice constant ϕ is the diffraction angle λ is the wavelengthWork Power and Energy FormulaThe formula for work power energy are as stated belowDescriptionFormulaWork done is given by $W = F \times d$ F is the force d is the displacementKinetic Energy $K.E = \frac{1}{2}mv^2$ m is the mass of the body. v is the velocity of the bodyPotential Energy $P.E = mgh$ m is the mass of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{F}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dt}$		
grating (dark stripes)d is the lattice constant ϕ is the diffraction angle λ is the wavelengthWork Power and Energy FormulaThe formula for work power energy are as stated belowDescriptionFormulaWork done is given byW = $F \times d$ F is the force d is the displacementKinetic Energy $K.E = \frac{1}{2}mv^2$ m is the mass of the body. v is the velocity of the bodyPotential Energy $P.E = mgh$ m is the mass of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{r}.\vec{ds}}{dt} = \vec{r}.\vec{V}$ Conservative $F = -\frac{du}{dt}$	(bright stripes)	λ is the wavelength
stripes)d is the lattice constant ϕ is the diffraction angle λ is the wavelengthWork Power and Energy FormulaThe formula for work power energy are as stated belowDescriptionFormulaWork done is given by $W = F \times d$ F is the force d is the displacementKinetic Energy $K.E = \frac{1}{2}mv^2$ m is the mass of the body. v is the velocity of the bodyPotential Energy $P.E = mgh$ m is the mass of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$	Diffraction	$dsin\theta = (K + 1/2)\lambda$
ϕ is the diffraction angle λ is the wavelengthWork Power and Energy FormulaThe formula for work power energy are as stated belowDescriptionFormulaWork done is given by $W = F \times d$ F is the force d is the displacementKinetic Energy $K.E = \frac{1}{2}mv^2$ m is the mass of the body. v is the velocity of the bodyPotential Energy $P.E = mgh$ m is the mass of the body in kg h is the height of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$	grating (dark	
λ is the wavelengthWork Power and Energy FormulaThe formula for work power energy are as stated belowDescriptionFormulaWork done is given by $W = F \times d$ F is the force d is the displacementKinetic Energy $K. E = \frac{1}{2}mv^2$ m is the mass of the body. v is the velocity of the bodyPotential Energy $P.E = mgh$ m is the mass of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$	stripes)	d is the lattice constant
Work Power and Energy FormulaThe formula for work power energy are as stated belowDescriptionDescriptionFormulaWork done is given by $W = F \times d$ F is the force d is the displacementKinetic Energy $K. E = \frac{1}{2}mv^2$ m is the mass of the body. v is the velocity of the bodyPotential Energy $P.E = mgh$ m is the mass of the body in kg h is the height of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$		φ is the diffraction angle
The formula for work power energy are as stated belowDescriptionFormulaWork done is given by $W = F \times d$ F is the force d is the displacementKinetic Energy $K. E = \frac{1}{2}mv^2$ m is the mass of the body. v is the velocity of the bodyPotential Energy $P.E = mgh$ m is the mass of the body in kg h is the height of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$		λ is the wavelength
DescriptionFormulaWork done is given by $W = F \times d$ F is the force d is the displacementKinetic Energy $K. E = \frac{1}{2}mv^2$ m is the mass of the body. v is the velocity of the bodyPotential Energy $P.E = mgh$ m is the mass of the body in kg h is the height of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$		Work Power and Energy Formula
Work done is given by $W = F \times d$ F is the force d is the displacementKinetic Energy $K. E = \frac{1}{2}mv^2$ m is the mass of the body. v is the velocity of the bodyPotential Energy $P. E = mgh$ m is the mass of the body in kg h is the height of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the timePower $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$	The formula for	work power energy are as stated below
given byF is the force d is the displacementKinetic Energy $K.E = \frac{1}{2}mv^2$ m is the mass of the body. v is the velocity of the bodyPotential Energy $P.E = mgh$ m is the mass of the body in kg h is the height of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$	Description	Formula
d is the displacementKinetic Energy $K. E = \frac{1}{2}mv^2$ m is the mass of the body. v is the velocity of the bodyPotential Energy $P. E = mgh$ m is the mass of the body in kg h is the height of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$	Work done is	$W = F \times d$
Kinetic Energy $K.E = \frac{1}{2}mv^2$ m is the mass of the body. v is the velocity of the bodyPotential Energy $P.E = mgh$ m is the mass of the body in kg h is the height of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the timePower $P = \frac{F.ds}{dt} = F.V$ Conservative $F = -\frac{du}{dr}$	given by	F is the force
Energym is the mass of the body. v is the velocity of the bodyPotential Energy $P.E = mgh$ m is the mass of the body in kg h is the height of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$		d is the displacement
Energym is the mass of the body. v is the velocity of the bodyPotential Energy $P.E = mgh$ m is the mass of the body in kg h is the height of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$	Kinetic	$K.E = \frac{1}{2}mv^2$
Potential $P.E = mgh$ Energy $P.E = mgh$ m is the mass of the body in kgh is the height of the body in metersg is the acceleration due to gravity Power $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$	Energy	
Potential Energy $P. E = mgh$ m is the mass of the body in kg h is the height of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$		
Energym is the mass of the body in kg h is the height of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$		v is the velocity of the body
Energym is the mass of the body in kg h is the height of the body in meters g is the acceleration due to gravityPower $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$	Potential	P E = mah
Power $P = \frac{W}{t}$ Power $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$, and the second s
Power $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F}.\vec{ds}}{dt} = \vec{F}.\vec{V}$ Conservative $F = -\frac{du}{dr}$		
Power $P = \frac{W}{t}$ W is the work done by the body t is the time $P = \frac{\vec{F} \cdot \vec{ds}}{dt} = \vec{F} \cdot \vec{V}$ Conservative $F = -\frac{du}{dr}$	71()	
W is the work done by the body t is the time $P = \frac{\vec{F} \cdot \vec{ds}}{dt} = \vec{F} \cdot \vec{V}$ Conservative $F = -\frac{du}{dr}$	STIV	
W is the work done by the body t is the time $P = \frac{\vec{F} \cdot \vec{ds}}{dt} = \vec{F} \cdot \vec{V}$ Conservative $F = -\frac{du}{dr}$	Power	D - W
t is the time $P = \frac{\vec{F} \cdot \vec{ds}}{dt} = \vec{F} \cdot \vec{V}$ Conservative $F = -\frac{du}{dr}$		C C
$P = \frac{\vec{F} \cdot \vec{ds}}{dt} = \vec{F} \cdot \vec{V}$ Conservative $F = -\frac{du}{dr}$		
		t is the time
		$P = \frac{\vec{F} \cdot \vec{ds}}{dt} = \vec{F} \cdot \vec{V}$
		$F = -\frac{du}{dr}$
	Forces	

Work-Energy theorem	$W_{net} = \Delta K$ Where W_{net} is the sum of all forces acting on the object ΔK is the change of kinetic energy Kinetic Theory Formula	
The formula for	r kinetic theory are as stated below	
Description	Formula	
Boltzmann's Constant	$k_{B} = \frac{nR}{N}$ $k_{B} = \text{Boltzmann's constant}$ $R = \text{gas constant}$ $n = \text{number of moles}$ $N = \text{number of particles in one mole}$	
Total translational Kinetic Energy of Gas	$K.E = \frac{3}{2} (nRT)$ R = gas constant n = number of moles T = absolute temperature	d
Maxwell distribution law	$V_{rms} > V > V_p$	
01-	V_{rms} = RMS speed V_p = most probable speed V = average speed	
RMS Speed	$V_{rms} = \sqrt{\frac{3kt}{m}} = \sqrt{\frac{3Rt}{M}}$ R = universal gas constant T = absolute temperature M = molar mass	

Auerago	→	1
Average	$\vec{v} = \sqrt{\frac{8kt}{\pi m}} = \sqrt{\frac{8Rt}{\pi M}}$	
Speed Most		
probable	$v_p = \sqrt{\frac{2kt}{m}} = \sqrt{\frac{2Rt}{M}}$	
speed		
Pressure of	1 2	
ideal gas	$p = \frac{1}{3} \rho v_{rms}^2$	
Equipartition	For each degree of freedom	
of energy	$K = \frac{1}{2} k_{\rm B} T$	
	For f degree of freedom	
	$K = \frac{f}{2} k_B T$	
	k_{B} = Boltzmann's constant	
	T = temperature of gas	
Internal	For n moles of an ideal gas, internal energy is given as	
Energy	$U = \frac{f}{2} (nRT)$	
	r kinetic theory of gases are as stated below	
	0.77	α
Description	Formula	d
Description Boltzmann's	0.77	d
Description	Formula	d
Description Boltzmann's	Formula $k_{B} = \frac{nR}{N}$	d
Description Boltzmann's	Formula $k_B = \frac{nR}{N}$ • k_B is the Boltzmann's Constant	d
Description Boltzmann's	Formula $k_B = \frac{nR}{N}$ • k_B is the Boltzmann's Constant• R is the gas Constant	d
Description Boltzmann's	Formula $k_B = \frac{nR}{N}$ • k_B is the Boltzmann's Constant• R is the gas Constant• n is the Number of Moles	d
Description Boltzmann's	Formula $k_B = \frac{nR}{N}$ • k_B is the Boltzmann's Constant • R is the gas Constant • n is the Number of Moles • N is the Number of Particles in one mole (the Avogadro number)	d
Description Boltzmann's Constant	Formula $k_{B} = \frac{nR}{N}$ • k_{B} is the Boltzmann's Constant • R is the gas Constant • n is the Number of Moles • N is the Number of Particles in one mole (the Avogadro number) $K. E = \left(\frac{3}{2}\right)nRT$	d
Description Boltzmann's Constant	Formula $k_B = \frac{nR}{N}$ • k_B is the Boltzmann's Constant• R is the gas Constant• R is the gas Constant• n is the Number of Moles• N is the Number of Particles in one mole (the Avogadro number) $K. E = \left(\frac{3}{2}\right)nRT$ • n is the number of moles	d
Description Boltzmann's Constant	Formula $k_{B} = \frac{nR}{N}$ • k_{B} is the Boltzmann's Constant • R is the gas Constant • n is the Number of Moles • N is the Number of Particles in one mole (the Avogadro number) $K. E = \left(\frac{3}{2}\right)nRT$	d
Description Boltzmann's Constant	Formula $k_B = \frac{nR}{N}$ • k_B is the Boltzmann's Constant• R is the Boltzmann's Constant• R is the gas Constant• n is the Number of Moles• N is the Number of Particles in one mole (the Avogadro number) $K. E = \left(\frac{3}{2}\right)nRT$ • n is the number of moles• R is the Universal gas Constant• T is the absolute Temperature	d
Description Boltzmann's Constant Total Translational K.E of Gas	Formula $k_B = \frac{nR}{N}$ • k_B is the Boltzmann's Constant• R is the gas Constant• R is the gas Constant• n is the Number of Moles• N is the Number of Particles in one mole (the Avogadro number) $K. E = \left(\frac{3}{2}\right)nRT$ • n is the number of moles• R is the Universal gas Constant• T is the absolute Temperature $V_{rms} > V > Vp$	đ
Description Boltzmann's Constant Total Translational K.E of Gas	Formula $k_B = \frac{nR}{N}$ • k_B is the Boltzmann's Constant• R is the Boltzmann's Constant• R is the gas Constant• n is the Number of Moles• N is the Number of Particles in one mole (the Avogadro number) $K. E = \left(\frac{3}{2}\right)nRT$ • n is the number of moles• R is the Universal gas Constant• T is the absolute Temperature	đ

	• <i>Vp</i> is the most probable speed
RMS Speed (V _{rms})	$V_{rms} = \sqrt{\frac{8kt}{m}} = \sqrt{\frac{3RT}{M}}$ • R is the universal gas constant. • T is the absolute temperature. • M is the molar mass.
Average Speed	$\vec{v} = \sqrt{\frac{8kt}{\pi m}} = \sqrt{\frac{8RT}{\pi M}}$
Most Probable Speed (V_p)	$V_p = \sqrt{\frac{2kt}{m}} = \sqrt{\frac{2RT}{M}}$
The Pressure of Ideal Gas	$P = \frac{1}{3}V_{rms}^2$ • P is the density of molecules
Equipartition of Energy	$K = \frac{1}{2}K_BT$ for each degree of freedom $K = \left(\frac{f}{2}\right)K_BT$ for molecules having f degrees of freedom • K_B is the Boltzmann's Constant • T is the Temperature of the gas
Internal Energy	$U = \left(\frac{f}{2}\right) nRT$ • For n moles of an ideal Gas.

<u>Part 8</u>

Lenz's Lav	w Formula
The formula for Lenz's law are as stated	below
Description	Formula
Magnetic Flux	The magnetic flux through a plane of area dA placed in a uniform magnetic field B is given as $\phi=B\cdot dA$ When the surface is closed, then magnetic flux will be zero. This is due to magnetic lines of force are closed lines and free magnetic poles is not exist.
Lenz's Law	The direction of induced emf or current in the circuit is in such a way that it opposes the cause due to which it is produced. Therefore, $E = -N(d\phi/dt)$
Induced emf	Induced emf is given as

	$E = -N(d\phi/dt)$
	$E = -N((\phi_1 - \phi_2)/t)$
Induced Current	Induced Current is given as
	$I = E/R = N/R(d\phi/dt) = N/R((\phi_{1-}\phi_2)/t)$
Self – Induction	Change in the strength of flow of current is opposed by a characteristic of a coil is known as self-inductance. It is given as ϕ =LI Here, L = coefficient of self – inductance Magnetic flux rate of change in the coil is given as $d\phi/dt = Ldl/dt = -E$
Mutual – Induction	Mutual – Induction is given as $e^2 = (d(N_2 \phi_2)/dt = M (dl_1)/dt$
SHOSHWO	Therefore, M = (μο N1N2A)/I

Chemistry Formulas

<u>Part 1</u>

	Enthalpy Formula
The formula for enthalpy	are as stated below
Description	Formula
Enthalpy	H = U + pV U = Internal energy of system p = Pressure of system V = Volume of system
For change in Enthalpy (ΔΗ)	• At isobaric condition: When $\Delta p=0$; $\Delta H = C_p (T_2 - T_1)$ • At isochoric condition: When $\Delta V=0$; $\Delta H = Q_V + V\Delta p$ • At isothermal condition: When $\Delta T=0$; $\Delta H=0$ • At Adiabatic condition: When Q=0; $\Delta H = C_p (T_2 - T_1)$
Enthalpy change of a reaction	$\begin{array}{l} \Delta H_{reaction} = H_{product} - H_{reactants} \\ \Delta H^{\circ} = H^{\circ}_{products} - H^{\circ}_{reactants} \\ = positive \Delta H - endothermic \\ = negative \Delta H - exothermic \end{array}$
Enthalpy of Reaction from Enthalpies of Formation	The enthalpy of reaction can be given as:- $\Delta H^{\circ}_{r} = \sum v_{B} \Delta H^{\circ}_{f,products} - \sum v_{B} \Delta H^{\circ}_{f,reactants}$ v_{B} is the stoichiometric coefficient
Estimation of Enthalpy of a reaction from bond Enthalpies	H=Enthalpy required to break reactants into gaseous atoms – Enthalpy released to form products from the gasesous atoms
Resonance energy	$\Delta H^{\circ}_{resonance} = \Delta H^{\circ}_{f,experimental} - \Delta H^{\circ}_{f,calculated}$ $\Delta H^{\circ}_{resonance} = \Delta H^{\circ}_{c,calculated} - \Delta H^{\circ}_{f,experimental}$

The formula for entropy	Entropy Formula
Description	Formula
Entropy	$\Delta S_{system} = \int_{A}^{B} \frac{dq_{rev}}{T}$
Entropy calculation for an ideal gas	$\Delta S_{system} = nc_{v}ln \frac{T_{2}}{T_{1}} + nR. ln \frac{V_{2}}{V_{1}}$ Also $\Delta S_{system} = nc_{p}ln \frac{T_{2}}{T_{1}} + nR. ln \frac{V_{2}}{V_{1}}$
if the reaction of the process is known then we can find ΔS_{rxn} by	$\Delta S_{rxn} = \sum \Delta S_{products} - \sum \Delta S_{reactants}$ $\Delta S_{rxn} - refers to the standard entropy values$
using a table of standard entropy values	$\Sigma \Delta Sproducts$ = refers to the sum of the $\Delta Sproducts$ $\Sigma \Delta reactants$ – refers to the sum of the $\Delta Sreactants$
Gibbs free energy	$G_{system} = H_{system} - TS_{system}$
The formula for atomic	Atomic Mass Formula mass are as stated below
Description	Formula
Atomic Mass	Atomic Mass = Mass of protons + Mass of neutrons + Mass of electrons
Mass Number	Mass number = no. of protons + no. of neutrons
Relative atomic mass	$RAM = \frac{Mass of one atom of an element}{\frac{1}{2} \times mass of one carbon atom}$
Specific gravity	Specific gravity = $\frac{\text{density of the substance}}{\text{density of water at } 4^{\circ}C}$
Absolute density	Absolute density = $\frac{Molar mass of the gas}{Molar volume of the gas}$ $\rho = \frac{PM}{RT}$
Vapor density	$V.D. = \frac{d_{gas}}{d_{H_2}} = \frac{PM_{\frac{gas}{RT}}}{PM_{\frac{H_2}{RT}}} = \frac{M_{gas}}{M_{H_2}} = \frac{M_{gas}}{2}$

	M DUD
	$\therefore M_{gas} = 2 V. D.$
Molarity	$M = \frac{w \times 1000}{(Mol. wt of solute) \times V_{in ml}}$
Molality	$m = \frac{number of moles of solute}{mass of solvent in gram} \times 1000 = \frac{1000 \times w_1}{M_1 \times w_2}$
Mole fraction	• Mole fraction of solution $(x_1) = \frac{n}{n+N}$ • Mole fraction of solvent $(x_2) = \frac{N}{n+N}$ $x_1 + x_2 = 1$
% Calculation:	• $\% w/w = \frac{mass of solute in gm}{mass of solution in gm} \times 100$ • $\% w/v = \frac{mass of solute in gm}{Volume of solution in ml} \times 100$ • $\% v/v = \frac{Volume of solute in ml}{Volume of solution} \times 100$
Derived conversion	<i>m</i> is molality <i>m</i> is molality x_1 is mole fraction of solvent x_2 is mole fraction of solute
Average atomic mass	$A_{x} = \frac{a_{1}x_{1} + a_{2}x_{2} + \dots + a_{n}x_{n}}{100}$
Mean molar mass	$M_{avg} = \frac{M_1 n_1 + M_2 n_2 + \dots + M_n n_n}{n_1 + n_2 + \dots + n_n}$

Normality	• $N = \frac{Number of equivalents of solute}{Volume of solution}$
	• $N = Molarity \times v. f$
	• $N = Motartiy \times V. J$
At equivalence point	• $N_1 V_1 = N_2 V_2$
	• $n_1 M_1 V_1 = n_2 M_2 V_2$
	•
Oxidation Number	Oxidation Number = number of electrons in the valence shell –
	number of electrons left after bonding
Equivalent weight	$E = \frac{Atomic weight}{Valency factor}$
Concept of number of	• No. of equivalents of solute $= \frac{Wt}{Eq. wt.} = \frac{W}{E} = \frac{W}{M/n}$
equivalents	
	• No. of equivalents of solute = No. of moles of solute ×v.f.
Measurement of	mass of CaCO
	• Hardness = $\frac{\text{mass of CaCO}_3}{\text{Total mass of water}} \times 10^6$
Hardness	
The formula for atomic	structure are as stated below
The formula for atomic Description	structure are as stated below Formula
Description Planck's Quantum	Formula
Description Planck's Quantum Theory	Formula Energy of one photon = $hv = \frac{hc}{\lambda}$ $hv = hv_0 + \frac{1}{2}m_ev^2$
Description Planck's Quantum Theory Photoelectric effect:	Formula Energy of one photon = $hv = \frac{hc}{\lambda}$ $hv = hv_0 + \frac{1}{2}m_ev^2$ • $mvr = n = \frac{h}{2\pi}$
Description Planck's Quantum Theory Photoelectric effect: Bohr's Model for	Formula Energy of one photon = $hv = \frac{hc}{\lambda}$ $hv = hv_0 + \frac{1}{2}m_ev^2$
Description Planck's Quantum Theory Photoelectric effect: Bohr's Model for	Formula Energy of one photon = $hv = \frac{hc}{\lambda}$ $hv = hv_0 + \frac{1}{2}m_ev^2$ • $mvr = n = \frac{h}{2\pi}$ • $E_n = -\frac{E_1}{n^2}z^2 = -2.178 \times 10^{-18}\frac{z^2}{n^2}J/atom = -13.6\frac{z^2}{n^2}eV$
Description Planck's Quantum Theory Photoelectric effect: Bohr's Model for	Formula Energy of one photon = $hv = \frac{hc}{\lambda}$ $hv = hv_0 + \frac{1}{2}m_ev^2$ • $mvr = n = \frac{h}{2\pi}$
Description Planck's Quantum Theory Photoelectric effect: Bohr's Model for	Energy of one photon = $hv = \frac{hc}{\lambda}$ $hv = hv_0 + \frac{1}{2}m_ev^2$ • $mvr = n = \frac{h}{2\pi}$ • $E_n = -\frac{E_1}{n^2}z^2 = -2.178 \times 10^{-18}\frac{z^2}{n^2}J/atom = -13.6\frac{z^2}{n^2}eV$ • $E_1 = \frac{-2\pi^2 me^4}{n^2}$
Description Planck's Quantum Theory Photoelectric effect: Bohr's Model for	Energy of one photon = $hv = \frac{hc}{\lambda}$ $hv = hv_0 + \frac{1}{2}m_ev^2$ • $mvr = n = \frac{h}{2\pi}$ • $E_n = -\frac{E_1}{n^2}z^2 = -2.178 \times 10^{-18}\frac{z^2}{n^2}J/atom = -13.6\frac{z^2}{n^2}eV$ • $E_1 = \frac{-2\pi^2me^4}{n^2}$ • $r_n = \frac{n^2}{Z} \times \frac{h^2}{4\pi^2e^2m} = \frac{0.529 \times n^2}{Z}A^\circ$
Description Planck's Quantum Theory Photoelectric effect: Bohr's Model for	Energy of one photon = $hv = \frac{hc}{\lambda}$ $hv = hv_0 + \frac{1}{2}m_ev^2$ • $mvr = n = \frac{h}{2\pi}$ • $E_n = -\frac{E_1}{n^2}z^2 = -2.178 \times 10^{-18}\frac{z^2}{n^2}J/atom = -13.6\frac{z^2}{n^2}eV$ • $E_1 = \frac{-2\pi^2me^4}{n^2}$ • $r_n = \frac{n^2}{Z} \times \frac{h^2}{4\pi^2e^2m} = \frac{0.529 \times n^2}{Z}A^\circ$
Description Planck's Quantum Theory Photoelectric effect: Bohr's Model for	Energy of one photon = $hv = \frac{hc}{\lambda}$ $hv = hv_0 + \frac{1}{2}m_ev^2$ • $mvr = n = \frac{h}{2\pi}$ • $E_n = -\frac{E_1}{n^2}z^2 = -2.178 \times 10^{-18}\frac{z^2}{n^2}J/atom = -13.6\frac{z^2}{n^2}eV$ • $E_1 = \frac{-2\pi^2 me^4}{n^2}$
Description Planck's Quantum Theory Photoelectric effect: Bohr's Model for	Energy of one photon = $hv = \frac{hc}{\lambda}$ $hv = hv_0 + \frac{1}{2}m_ev^2$ • $mvr = n = \frac{h}{2\pi}$ • $E_n = -\frac{E_1}{n^2}z^2 = -2.178 \times 10^{-18}\frac{z^2}{n^2}J/atom = -13.6\frac{z^2}{n^2}eV$ • $E_1 = \frac{-2\pi^2me^4}{n^2}$ • $r_n = \frac{n^2}{z} \times \frac{h^2}{4\pi^2e^2m} = \frac{0.529 \times n^2}{z}A^2$ • $v = \frac{2\pi ze^2}{nh} = \frac{2.18 \times 10^6 \times z}{n}m/s$
Description Planck's Quantum Theory Photoelectric effect: Bohr's Model for Hydrogen like atoms	Energy of one photon = $hv = \frac{hc}{\lambda}$ $hv = hv_0 + \frac{1}{2}m_ev^2$ • $mvr = n = \frac{h}{2\pi}$ • $E_n = -\frac{E_1}{n^2}z^2 = -2.178 \times 10^{-18}\frac{z^2}{n^2}J/atom = -13.6\frac{z^2}{n^2}eV$ • $E_1 = \frac{-2\pi^2me^4}{n^2}$ • $r_n = \frac{n^2}{Z} \times \frac{h^2}{4\pi^2e^2m} = \frac{0.529 \times n^2}{Z}A^\circ$
Description Planck's Quantum Theory Photoelectric effect: Bohr's Model for Hydrogen like atoms	Formula Energy of one photon = $hv = \frac{hc}{\lambda}$ $hv = hv_0 + \frac{1}{2}m_ev^2$ • $mvr = n = \frac{h}{2\pi}$ • $E_n = -\frac{E_1}{n^2}z^2 = -2.178 \times 10^{-18}\frac{z^2}{n^2}J/atom = -13.6\frac{z^2}{n^2}eV$ • $E_1 = \frac{-2\pi^2me^4}{n^2}$ • $r_n = \frac{n^2}{Z} \times \frac{h^2}{4\pi^2e^2m} = \frac{0.529 \times n^2}{Z}A^\circ$ • $v = \frac{2\pi ze^2}{nh} = \frac{2.18 \times 10^6 \times z}{n}m/s$ $\lambda = \frac{h}{mc} = \frac{h}{p}$ (For photon)
Description Planck's Quantum Theory Photoelectric effect: Bohr's Model for Hydrogen like atoms De-Broglie wavelength	Formula Energy of one photon = $hv = \frac{hc}{\lambda}$ $hv = hv_0 + \frac{1}{2}m_ev^2$ • $mvr = n = \frac{h}{2\pi}$ • $E_n = -\frac{E_1}{n^2}z^2 = -2.178 \times 10^{-18}\frac{z^2}{n^2}J/atom = -13.6\frac{z^2}{n^2}eV$ • $E_1 = \frac{-2\pi^2m^4}{n^2}$ • $r_n = \frac{n^2}{Z} \times \frac{h^2}{4\pi^2e^2m} = \frac{0.529 \times n^2}{Z}A^\circ$ • $v = \frac{2\pi ze^2}{nh} = \frac{2.18 \times 10^6 \times z}{n}m/s$ $\lambda = \frac{h}{mc} = \frac{h}{p}$ (For photon)
Description Planck's Quantum Theory Photoelectric effect: Bohr's Model for Hydrogen like atoms De-Broglie wavelength Wavelength of emitted	Energy of one photon = $hv = \frac{hc}{\lambda}$ $hv = hv_0 + \frac{1}{2}m_ev^2$ • $mvr = n = \frac{h}{2\pi}$ • $E_n = -\frac{E_1}{n^2}z^2 = -2.178 \times 10^{-18}\frac{z^2}{n^2}J/atom = -13.6\frac{z^2}{n^2}eV$ • $E_1 = \frac{-2\pi^2me^4}{n^2}$ • $r_n = \frac{n^2}{z} \times \frac{h^2}{4\pi^2e^2m} = \frac{0.529 \times n^2}{z}A^\circ$ • $v = \frac{2\pi ze^2}{nh} = \frac{2.18 \times 10^6 \times z}{n}m/s$

Number of photons	E = nhv
emitted by a sample of	Where n is the number of photons emitted
H atom	h is the Planck's constant
	v is the frequency
Heisenberg's	$h \to h$
uncertainty principle	• $\Delta x. \Delta p > \frac{h}{4\pi}$
	• $m\Delta x. \Delta v \ge \frac{h}{4\pi}$ • $\Delta x. \Delta v \ge \frac{h}{4\pi m}$
	• $\Delta x. \Delta v > \frac{h}{h}$
	$-m = b - 4\pi m$
Quantum Number	• Principle quantum number - $(n = 1, 2, 3, 4, 5\infty)$
	• Orbital angular momentum of electron in any orbit $= \frac{nn}{2\pi}$
	• Azimuthal quantum number $(l) = 0, 1, 2, 3,(n - 1)$
	 Magnetic quantum number (m)=-l,1,0,1+l
	• Spin quantum number (s)=+ $\frac{1}{2}$, - $\frac{1}{2}$
	• Number of orbitals in subshell = $2l + 1$
	Maximum number of electrons in particular
	subshell = $2(2l + 1)$
	• Orbital angular momentum $L = \frac{h}{2\pi} \sqrt{l(l+1)} = \hbar \sqrt{l(l+1)}$
	• $\hbar = \frac{h}{2\pi}$
The formula for molar r	Molar Mass Formula nass are as stated below
Description	Formula
Molar mass	$M = \frac{m}{m}$
	n
	M is the molar mass,
	m is the mass of a substance (in grams),
45	n is the number of moles of a substance.
Molar mass of an element	Molar mass = Molar mass constant × Relative atomic mass
molar mass from	$M = \frac{\Delta T_f}{K_f}$
colligative properties	$IVI - \overline{K_f}$
data	
When elevation of	$\Delta Tb = Kbm$
boiling point is given	$m = 1000 \times w2 / w1 \times M2$
	$\Delta Tb = Kb \times 1000 \times w2 / w1 \times M2$
When depression of	$\Delta T f = K f m$
When depression of freezing point is given	$\Delta T f = K f m$ $\Delta T f = K f \times 1000 \times w2 / w1 \times M2$

Molarity	$M = \frac{w \times 1000}{(Mol. wt of solute) \times V_{in ml}}$
Molality	$m = \frac{number of moles of solute}{mass of solvent in gram} \times 1000 = \frac{1000 \times w_1}{M_1 \times w_2}$
Average atomic mass	$A_{x} = \frac{a_{1}x_{1} + a_{2}x_{2} + \dots + a_{n}x_{n}}{100}$
Mean molar mass	$M_{avg} = \frac{M_1 n_1 + M_2 n_2 + \dots + M_n n_n}{n_1 + n_2 + \dots + n_n}$

Stoichiometry Formula

The formula for stoichiometry are as stated below

Description	Formulas
Relative atomic mass	Relative atomic mass (R. A. M) = $\frac{Mass of one atom of an element}{\frac{1}{12} \times mass of one Carbon atom}$ = Total number of
Density	Specific gravity = $\frac{\text{density of the substance}}{\text{density of water at 4}^{\circ}C}$
For Gases:	Absolute density $\left(\frac{mass}{volume}\right) = \frac{Molar mass of the gas}{Molar Volume of the gas}$ $=> \rho = \frac{PM}{RT}$ Vapor density V. D $= \frac{d_{gas}}{d_{H_2}} = \frac{PM_{\frac{gas}{RT}}}{PM_{\frac{H_2}{Rt}}} = \frac{M_{gas}}{M_{H_2}}$ $M_{gas} = 2 V. D$
Molarity (M):	$Molarity(M) = \frac{w \times 1000}{(Mol. wt of Solute) \times V_{in ml}}$
Molality (m):	$Molality = \frac{number of moles of solute}{mass of solvent in gram} \times 1000 = 1000 \frac{W_1}{M_1 W_2}$
% Calculation	$\% \frac{w}{v} = \frac{Mass \ of \ solute \ in \ gm}{Volume \ of \ solution \ in \ ml} \times 100$
	$\% \frac{v}{v} = \frac{Volume \ of \ solute \ in \ ml}{Volume \ of \ solution} \times 100$
Average/ Mean atomic mass:	$A_{x} = \frac{a_{1}x_{1} + a_{2}x_{2} + \dots + a_{n}x_{n}}{100}$
Mean molar mass or molecular Mass	$M_{avg} = \frac{n_1 M_1 + n_2 M_2 + \dots + n_n M_n}{n_1 + n_2 + n_3 + \dots + n_n}$
Normality (N)	$Normality(N) = \frac{Number of equivalents of solute}{Volume of Sodium(in liters)}$

Measurement of Hardness	Hardness in $ppm = \frac{mass of CaCO_3}{Total Mass of water} \times 10^6$
Molarity in mole Fraction	$x_2 = \frac{MM_1 \times 1000}{\rho \times 1000 - MM_2}$
Mole Fraction into molality	$m = \left(\frac{x_2 \times 1000}{x_1 M_1}\right)$
Molality into mole fraction	$x_{2} = \frac{mM_{1}}{1000 + mM_{1}}$
Molality into molarity	$M = \frac{m\rho \times 1000}{1000 + mM_2}$
Relation between molarity and molality	$m = \frac{M \times 1000}{1000\rho - MM_1}$ Where ρ is the density of solution in (gm/mL). M_1 is molecular weight of solute m is the molality and M is the molarity
Ү-Мар	Number * * Mole * * * * * * * * * *

	→ At. wt. ↓ × At. wt. Mass	
<u>Part 2</u>	HOUT MOHORKO	
CHUS	Thermodynamics Formulas	
The formula for thermo	odynamics are as stated below	
Description	Formula	
Various processes in	Isothermal process: T = constant	
Thermodynamic	dT = 0	
	$\Delta T = 0$	
	Isochoric process: V = constant	
	dV = 0	
	$\Delta V = 0$	
	Isobaric process: P = constant	
	dP = 0	

	$\Delta P = 0$	
	Adiabatic process: q = 0	
	or the heat exchange with surrounding is zero	
Sign convention	When work is done on the system: Positive	
	When work is done by the system: Negative	
Laws of	• 1 st law of Thermodynamics	
Thermodynamics	$\Delta U = (U_2 - U_1) = q + w$	
	• 2 nd law of Thermodynamics	
	$\Delta S_{universe} = \Delta S_{system} + \Delta S_{surrounding} > 0$	
	This equation is for spontaneous processes.	
	• 3 rd law of Thermodynamics	
	$S - S_0 = k_B \ln \Omega$	
	<i>S</i> is the entropy of the system.	
	S_0 is the initial entropy.	
	$k_{_B}$ denotes the Boltzmann constant.	
	Ω refers to the total number of microstates that are	
	consistent with the system's macroscopic configuration.	
Law of Equipartition	$U = \frac{f}{2}nRT$	
Energy	$\Delta E = \frac{f}{2} nR(\Delta T)$	
	2	
Total heat capacity	Where, f is degrees of freedom for that gas.	_
	$C_T = \frac{\Delta q}{\Delta T} = \frac{dq}{dT}$	
Molar heat capacity	$C = \frac{\Delta q}{n\Delta T} = \frac{dq}{ndT}$ $C_p = \frac{\gamma R}{\gamma - 1} \qquad C_v = \frac{R}{\gamma - 1}$	
Specific heat capacity	$S = \frac{\Delta q}{m\Delta T} = \frac{dq}{mdT}$	
Application of 1 st Law	$\Delta U = \Delta Q + \Delta W$	
of Thermodynamics	$\Rightarrow \Delta W = -P \Delta V (\therefore \Delta U = \Delta Q - P \Delta V)$	
Isothermal Reversible expansion/compressio n of an ideal gas	$W = - nRT ln\left(\frac{V_f}{V_i}\right)$	
Reversible/irreversible	Since $dV = 0$	
isochoric processes	So, $dW = -P_{ext} dV = 0$ $W = P(V_f - V_j)$	
Reversible isobaric process	$W = P(V_f - V_i)$	
Adiabatic reversible	$T_{2}V_{2}^{\gamma-1} = T_{1}V_{1}^{\gamma-1}$	
expansion Deversible work		
Reversible work	$W = \frac{r_2 r_2^{-r_1 r_1}}{\gamma - 1} = \frac{m(r_2^{-r_1})}{\gamma - 1}$	
Irreversible Work	$W = \frac{\frac{P_2 V_2 - P_1 V_1}{\gamma - 1}}{\frac{1}{\gamma - 1}} = \frac{nR(T_2 - T_1)}{\gamma - 1}$ $W = \frac{\frac{P_2 V_2 - P_1 V_1}{\gamma - 1}}{\frac{1}{\gamma - 1}} = \frac{nR(T_2 - T_1)}{\gamma - 1} = nC_v (T_2 - T_1) = -P_{ext} (V_2 - V_1)$	

	Use $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$	
	Gaseous State Formula	
The formula for gaseous	state are as stated below	
Description	Formula	
Temperature conversion from Celsius to Kelvin	$\frac{C-0}{100-0} = \frac{K-273}{373-273}$	
Temperature conversion from Kelvin to Fahrenheit	$\frac{K - 273}{373 - 273} = \frac{F - 32}{212 - 32}$	
Boyle's Law and	At constant temperature,	
Measurement of pressure	$V \propto \frac{1}{P}$	
pressure	$P_{1}V_{1} = P_{2}V_{2}$	
Charles Law	At constant pressure, $V \propto T \ Or \frac{V_1}{T_1} = \frac{V_2}{T_2}$	
	$V \propto I Or \frac{T_1}{T_1} = \frac{T_2}{T_2}$	2
Gay-Lussac's Law	At constant Volume, $P \propto T \frac{P_1}{T_1} = \frac{P_2}{T_2}$ Temp on absolute Scale	U
Ideal gas Equation	$PV = nRT$ $PV = \frac{w}{m}RT \text{ or } P = \frac{d}{m}RT \text{ or } Pm = dRT$	
Dalton's Law of Partial	$P_{1} = \frac{n_{1}RT}{V}, P_{2} = \frac{n_{2}RT}{V}$	
Pressure:	Total Pressure= $P_1 + P_2 + \dots$	
	$Partial \ pressure = Mole \ fraction \times Total \ Pressure$	
Average Molecular mass of gaseous mixture	$M_{mix} = \frac{Total mass of mixture}{Total no. of moles in mixture} = \frac{n_1 M_1 + n_2 M_2 + n_3 M_3}{n_1 + n_2 + n_3}$	
Graham's Law	Rate of Diffusion $r \propto \frac{1}{\sqrt{d}}$; d= density of gas	

	$\frac{r_{1}}{r_{2}} = \frac{\sqrt{d_{2}}}{\sqrt{d_{1}}} = \frac{\sqrt{M_{2}}}{\sqrt{M_{1}}} = \sqrt{\frac{V.D_{2}}{V.D_{1}}}$	
Van der wall's Equation	$\left(P + \frac{an^2}{v^2}\right)(v - nb) = nRT$	
	Where	
	'P' is the pressure	
	'a' and 'b' are the gas constants	
	'V' is the molar volume	
	'R' is the universal gas constant	
	'T' is the temperature	
	'n' is the number of moles	
Relation between	$V_c = 3b$	
molar volume (V) and	С	
gas constant (b)		
Relation between	$P_c = \frac{a}{27h^2}$	
Pressure (P) and gas	$c 27b^2$	
constant (a) and (b)		
Relation between	$T_c = \frac{8a}{27Rb}$	
temperature (T) and	c 27 <i>Rb</i>	
gas constant (b)		
Kinetic Theory of	Root mean Square speed	
Gases	$U_{rms} = \sqrt{\frac{3RT}{M}}$ Molar mass be in kg/mole	2
	Average speed $U_{avg} = U_1 + U_2 + U_3 + \dots U_N$	U.
	$U_{avg} = \sqrt{\frac{8RT}{\pi M}} = \sqrt{\frac{8KT}{\pi m}}$ K is Boltzmann Constant	
	Most Probable Speed	
	$U_{MPS} = \sqrt{\frac{2RT}{M}} = \sqrt{\frac{2KT}{m}}$	
SHOS	Chemical Equilibrium Formula	
The formula for chemica	l equilibrium are as stated below	
Description	Formula	
At Equilibrium:	Rate of forward reaction = rate of backward reaction $\Delta G = 0$ $Q = K_{eq}$	

	CY.
Equilibrium constant (<i>K</i>):	$K = \frac{\text{rate constant of forward reaction}}{\text{rate constant of backward reaction}} = \frac{K_f}{K_b}$

Equilibrium constant in terms of concentration (K_c) :	$\frac{K_{f}}{K_{b}} = K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$	
Equilibrium constant in terms of partial pressure (K_p) :	$K_{p} = \frac{\left[P_{c}\right]^{c} \left[P_{D}\right]^{d}}{\left[P_{A}\right]^{a} \left[P_{B}\right]^{b}}$	
Equilibrium constant in terms of mole fraction (K_x) :	$K_{x} = \frac{X_{c}^{c} X_{D}^{d}}{X_{A}^{a} X_{B}^{b}}$	
Relation between K_p & K_c :	$K_p = K_c \cdot (RT)^{\Delta n}$	
Relation between K_p & K_x :	$K_{p} = K_{x}(P)^{\Delta n}$ $\log \log \frac{K_{2}}{K_{1}} = \frac{\Delta H}{2.303 R} \left[\frac{1}{T_{1}} - \frac{1}{T_{2}}\right]$ Here ΔH = Enthalpy of reaction	
between equilibrium constant & standard free energy change	$\Delta G^{\circ} = -2.303 RT log = K$	
Reaction Quotient(Q):	$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$	n.
Degree of Dissociation (α):	$\alpha = \frac{number \ of \ moles \ dissociated}{initial \ number \ of \ moles \ taken}$	
Vapor Pressure of Liquid:	$Relative Humidity = \frac{Partial pressure of H_2 0 vapors}{Vapor pressure of H_2 0 at the temperature}$	
Thermodynamics of Equilibrium:	$\Delta G = \Delta G^{\circ} + 2.303 RTQ$	
Van't Hoff equation	$\log \log \frac{K_1}{K_2} = \frac{\Delta H^{\circ}}{2.303 R} \left[\frac{1}{T_2} - \frac{1}{T_1} \right]$	
The formula for ionic eq	Ionic Equilibrium Formula uilibrium are as stated below	
Description	Formula	
Ostwald Dilution Law:	• Dissociation constant of weak acid (K_a) ,	

	$K_{a} = \frac{[H^{+}][A^{-}]}{HA} = \frac{[C\alpha][C\alpha]}{C(1-\alpha)} = \frac{C\alpha^{2}}{1-\alpha}$ • If $\alpha \ll 1$, then $1 - \alpha \cong 1$ or $K_{a} = c\alpha^{2}$ $\alpha = \sqrt{\frac{K_{a}}{C}} = \sqrt{K_{a} \times V}$ • Similarly for a weak base, $\alpha = \sqrt{\frac{K_{b}}{C}}$ Higher the value of K_{a}/K_{b} , stronger is the acid/base
Acidity and pH scale pH Calculations of Different Types of Solutions:	• $pH = -\log a_{H^+}$ Here a_{H^+} is the activity of H^+ ions = molar concentration for dilute solution • $pH = -\log [H^+] [H^+] = 10^{-pH}$ • $pOH = -\log [OH^-] [OH -] = 10^{-pOH}$ • $pKa = -\log Ka Ka = 10^{pKa}$ • $pKb = -\log Kb Kb = 10^{-pKb}$ • • • • • • • • • • • • •
	If concentration is less than $10^{-6} M$ In this case H^+ ions coming from water cannot be neglected • Strong base solution: Using similar method as in part (a) calculate first $[OH^-]$ and then use $[H^+] \times [OH^-] = 10^{-14}$
pH of mixture of two strong acids:	• Number of H+ ions from I-solution = N_1V_1 • Number of H+ ions from II-solution = N_2V_2 $\left[H^+\right] = N = \frac{N_1V_1 + N_2V_2}{V_1 + V_2}$
pH of mixture of two strong bases:	$\left[OH^{-}\right] = N = \frac{N_{1}V_{1} + N_{2}V_{2}}{V_{1} + V_{2}}$
pH of mixture of a strong acid and a strong base:	• if $N_1V_1 > N_2V_2$, then the solution will be acidic in nature. So, $\left[H^+\right] = N = \frac{N_1V_1 - N_2V_2}{V_1 + V_2}$

	• If $N_2V_2 > N_1V_1$, then the solution will be basic in nature.]
	2 2 1 1' So,	
	$\left[OH^{-}\right] = N = \frac{N_2 V_2 - N_1 V_1}{V_1 + V_2}$	
pH of a weak acid(monoprotic) solution:	$K_{a} = \frac{[H^{+}][OH]^{-}}{[HA]} = \frac{C\alpha^{2}}{1-\alpha}$ If $\alpha \ll 1 \Rightarrow (1 - \alpha) \approx 1$ $K_{a} \approx C\alpha^{2}$	
	$\alpha = \sqrt{\frac{K_a}{C}}$ Here $\alpha < 0.1 \text{ or } 10\%$	
Relative Strength of two acids:	$\frac{[H^+] furnished by I acid}{[H^+] furnished by II acid} = \frac{c_1 \alpha_1}{c_2 \alpha_2} = \sqrt{\frac{k_a c_1}{k_a c_2}}$	
Hydrolysis of polyvalent anions or cations	For $[Na_3PO_4] = C$ $K_{a1} \times K_{h3} = K_w$ $K_{a2} \times K_{h2} = K_w$ $K_{a3} \times K_{h1} = K_w$ Generally, pH is calculated only using the first step hydrolysis $K_{h1} = \frac{Ch^2}{1-h} \approx Ch^2$	d
	$h = \sqrt{\frac{K_{h1}}{c}} \Rightarrow \left[OH^{-}\right] = ch = \sqrt{K_{h1} \times c} \Rightarrow \left[H^{+}\right] = \sqrt{\frac{K_{w} \times K_{a3}}{c}}$ $\therefore pH = \frac{1}{2} \left[pK_{w} + pK_{a3} + \log \log C\right]$	U
Buffer Solution:	• Acidic Buffer: e.g., CH ₃ COOH and CH ₃ COONa (weak	
SHOS	acid and salt of its conjugate base) $pH - pK_a + \log \log \frac{[salt]}{[Acid]}$ • Basic Buffer: e.g., $NH_4OH + NH_4Cl$ (weak base and salt of its conjugate acid) $pOH = pK_b + \log \log \frac{[Salt]}{[Base]}$	
Solubility Product:	• $K_{sp} = (xs)^{x}(ys)^{y} = x^{x} \cdot y^{y} \cdot (s)^{x+y}$	
	Charles's Law	
The formula for Charle's la	w are as stated below	

Description	Formulas
Charles' law is	$V\alpha T \text{ or } \frac{V_1}{T_1} = \frac{V_2}{T_2},$
expressed as	1 2
	Where V_1 and V_2 are initial and final volume and T_1 and T_2 are
	initial and final temperatures.
Derivation of Charles'	V α T
law	$\frac{V}{T} = constant = k$
	$\frac{V_1}{T_1} = k$ (I) and $\frac{V_2}{T_2} = k$ (II)
	Where V_1 and T_1 are initial volume and temperature and V_2 and
	$T_2^{}$ are the final volume and temperature.
	Equating equations (I) and (II), $\frac{V_1}{T_1} = \frac{V_2}{T_2} = k$
	Hence, we can generalize the formula and write it as: $\frac{(V_1)}{(T_1)} = \frac{(V_2)}{(T_2)}$
Gay-Lussac's Law	At constant volume,
	$P \propto T$
	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$
Ideal gas Equation	PV = nRT
	$PV = \frac{w}{m}RT \ Or \ Pm = dRT$
Boyle's Law	At Constant Temperature
	$V \propto \frac{1}{p}$
	D V - D V
<u></u>	$I_{1}v_{1} - I_{2}v_{2}$
Amagat's Law of partial volume	$V = V_1 + V_2 + V_3 + \dots Vn$

<u>Part 3</u>

Electrochemistry Formula

The formula for electrochemistry are as stated below

Description	Formula	
Gibbs Free energy	• $\Delta G = - nFE_{cell}$	
change	• $\Delta G^0 = - nFE_{cell}^0$	
Nernst Equation	Effect of concentration and temp on emf of cell	
	$\Delta G = \Delta G^{0} + RT ln Q$ where Q is reaction quotient	
	$\Delta G^{0} = -RT ln K_{eq}$ $E_{cell} = E_{cell}^{0} - \frac{RT}{nF} ln Q$	
	$E_{cell} = E_{cell}^0 - \frac{RT}{nF} \ln Q$	
	$E_{cell} = E_{cell}^0 - \frac{2.303RT}{nF} \log Q$	
	$E_{cell} = E_{cell}^0 - \frac{0.0591}{n} \log Q$	
	At chemical equilibrium	
	$\Delta G = 0; \qquad E_{cell} = 0$	~
	$\log K_{eq} = \frac{nE_{cell}^0}{0.0591}$ $E_{cell}^0 = \frac{0.0591}{n} \log K_{eq}$	U
	For an electrode:	
DIT	$E_{M^{n+}/M} = E_{M^{n+}/M}^{0} - \frac{2.303RT}{nF} \log 1/[M^{n+}]$	
Concentration Cell	$E^{\circ}_{cell} = 0$	
	Electrolyte Concentration cell	
	(eg., $Zn(s)/Zn^{2+}(c_1) Zn^{2+}(c_2)/Zn(s)$):	
	$E = \frac{0.0591}{2} \log \frac{C_2}{C_1}$	
	Electrode Concentration Cell	
	(e.g., Pt , $H_2(P_1 atm)/H^+(1 M) /H_2(P_2 atm)/Pt$):	
	$E = \frac{0.0591}{2} log \frac{P_1}{P_2}$	

Faraday's law of	• First law:
electrolysis:	The amount of chemical reaction (w) is proportional to the
	quantity of electricity passed (q) through the electrolyte.
	$w \propto q$
	w = zq
	w = Z
	Here Z is Electrochemical equivalent of substance
	• Second law:
	$W \propto E$
	$\frac{W}{E} = constant$
	$\frac{W_1}{E_1} = \frac{W_2}{E_2} = \dots = \frac{W_n}{E_n}$
	$\frac{W}{E} = \frac{i \times t \times current \ efficiency \ factor}{96500}$
	$current \ efficiency = \frac{actual \ mass \ deposited}{Theoretical \ mass \ deposited} \times 100$
Conductance:	• Conductance = $\frac{1}{Resistance}$
	• Specific conductance or conductivity: $K = \frac{1}{\rho}$
	Here, K is specific conductance
	• Equivalent conductance: $\lambda_E = \frac{K \times 1000}{Normality}$
SHOS	• Molar conductance: $\lambda_m = \frac{K \times 1000}{Molarity}$
	• Specific conductance = conductance $\times \frac{l}{a}$
Application of	• Calculation of λ_M^0 of weak electrolytes:
Kohlrausch law	$\lambda_{M(CH_{3}COOHI)}^{0} = \lambda_{M(CH_{3}COONa)}^{0} + \lambda_{M(HCI)}^{0} - \lambda_{M(NaCI)}^{0}$
	• To calculate degree of dissociation of a weak electrolyte
	$\alpha = \frac{\lambda_m^c}{\lambda_m^0}; K_{eq} = \frac{c\alpha^2}{1-\alpha}$

	• Solubility of sparingly soluble salt & their K_{sp} $\lambda_M^c = \lambda_M^{\infty} = k \times \frac{1000}{solubility}$ $K_{sp} = S^2$ • Transport Number: $t_c = \left[\frac{\mu_c}{\mu_c + \mu_a}\right], t_a = \left[\frac{\mu_a}{\mu_a + \mu_c}\right]$ • Here t_c is Transport Number of cation and t_a is the transport number of anion.
Ideal Gas Equation Formula The formula for ideal gas are as stated below	
Description	Formula
Ideal gas law is expressed as:	PV=nRT where, P is the pressure V is the volume n is the amount of substance R is the ideal gas constant.
Derivation of Ideal gas law	Ideal gas law combines three laws: • Boyle's Law: $V \propto 1/P$ • Charles' Law: $V \propto T$ • Avogadro's Law: $V \propto n$ Combining these above three Equation we get $V \propto \frac{nT}{P}$ The above equation shows that volume is proportional to the number moles and the temperature while inversely proportional to the pressure. This expression can be rewritten as follows: $V = \frac{RnT}{P}$ Multiplying both sides of the equation by P to Clear off the fraction, We get PV = nRT The Above equation is known as the ideal Gas Equation.
Molar From of $PV = nRT$	$n = \frac{m}{M}$, m= total mass of the gas, M=Molar mass

		1
	Density $\rho = \frac{m}{V}$,	
	$pV=rac{m}{M}RT$,	
	$p = \frac{m RT}{V M}$, $p = \rho \frac{R}{M} T$	
	r V M, $r r M$	
Combined Gas law	P_1V_1 P_2V_2	1
can be Stated as	$\frac{\frac{P_1V_1}{T_1}}{T_1} = \frac{\frac{P_2V_2}{T_2}}{T_2}$	
If we want to use N	$PV = Nk_bT$	
number of		
molecules instead of <i>n</i> moles, we can		
write the ideal gas		
law as		
The energy	$E = \frac{3}{2}nRT$	
possessed by the	Δ	
gas is in the kinetic		
energy of the molecules of the		
gas		
Avogadro's		
Constant	$\Lambda_{\rm M}$ and $\Lambda_{\rm M}$ and $\Lambda_{\rm M}$) is the action of the total number of	
	Avogadro's Constant (N_A) is the ratio of the total number of	
	molecules (<i>N</i>) to the total moles (<i>n</i>).	
	$N_A = \frac{N}{n} = \frac{N}{\frac{PV}{n}}$	2
		U.
	-1005	
	Diffusion Formula	
The formula for diffu	ision are as stated below	
Description	Formula	
Diffusion Formula	$Q_s = -D_s ds/dx$]
STL	Where Q_{g} is the rate of movement of matter, momentum or energy	
	through a unit normal area.	
	$-D_{\rm p}$ is the diffusion coefficient.	
	ds/dx is the gradient of mass, momentum or energy in the medium.	
Graham's Law	Rate of diffusion $r \propto \frac{1}{\sqrt{d}}$	1
	\sqrt{d} D= Density of Gas	
	$\frac{r_{1}}{r_{2}} = \frac{\sqrt{d_{2}}}{\sqrt{d_{1}}} = \frac{\sqrt{M_{2}}}{\sqrt{M_{1}}} = \sqrt{\frac{V.D_{2}}{V.D_{1}}}$	
	$\frac{2}{\sqrt{\mu_1}} \sqrt{\frac{\mu_1}{1}} \sqrt{\frac{1}{1}}$	J

N/ 1 N/ 1	(2)
Van der Waals	$\left(P + \frac{an^2}{v^2}\right)(V - nb) = nRT$
Equation	
Critical Constant	$V_{c} = 3b, P_{c} = \frac{a}{27b^{2}}, T_{c} = \frac{8a}{27Rb}$
Graham's Law for	$r_{Gas}A = \left(M_{Gas}B\right)^{\frac{1}{2}}$
comparison	$\frac{r_{Gas}A}{r_{Gas}B} = \frac{\left(M_{Gas}B\right)^{\frac{1}{2}}}{\left(M_{Gas}A\right)^{\frac{1}{2}}}$
between two	$(M_{Gas}A)$
Gases	
The formula for De-B	De-Broglie's Formula Broglie are as stated below
Description	Formula
The de-Broglie's	$\lambda = h/mv$,
Equation	Where λ is wavelength, h is Planck's constant, m is the mass of a
	particle, moving at a velocity v.
Derivation of	 Plank's quantum theory relates the energy of an
De-Broglie's	
equation	electromagnetic wave to its wavelength or frequency.
equation	$E = hv = \frac{hc}{\lambda} \dots \dots (1)$
	Einstein related the energy of particle matter to its mass and
	Velocity, as
	$E = mc^{2}$
	As the Smaller particle exhibits dual nature, and energy being the
	same, de Broglie Equation as
	$E = rac{hc}{\lambda} = mv^2$ then, $rac{h}{\lambda} = mv$
	This is the momentum of a particle with its wavelength and this
	equation is known as De-Broglie's Equation.
De-Broglie's Wavelength	$\lambda = \frac{h}{mv} = \frac{h}{momentum} = \frac{h}{p}$
Wavelength	• • •
CHV	$mv = \frac{nh}{2\Pi r}$ or $mvr = n \times (\frac{h}{2\Pi})$
Relation between	2117 2117
de Broglie Equation	
and Bohr's	
Hypothesis of	
Atom:	
	The the could be Decally as the stational state of the st
	The thermal de Broglie wavelength (λ th) is approximately the
Thermal De-Broglie Wavelength	The thermal de Broglie wavelength (λ th) is approximately the average de Broglie wavelength of the gas particles in an ideal gas at the specified temperature.

	$\lambda_{th} = \frac{h}{\sqrt{2\pi m k_b T}}$
	where, h = Planck constant, m = mass of a gas particle, $k_b = Boltzmann constant,$
	T = temperature of the gas,
De Broglie's in terms of kinetic energy	$\lambda = \frac{h}{\sqrt{2mK}}$

