11

Limit, Continuity and Differentiability

Limit	Logarithmic Limits
Indeterminate Forms	Exponential Limits
Algebra of Limits	Useful Trigonometric Results
One-sided Limits	Continuity at a Point
Right-hand Limit	Continuity in an Open and Closed Interval
Left-hand Limit	Properties of Continuous and Discontinuous
Limit of a Function Derived from One-sided	Functions
Limits	Types of Discontinuity
Some Important Limits	Types of Derivatives
L'Hôpital's Rule	Relation between Continuity and Differentiability
Some Important Expansions	Properties of Differentiable Functions

\bigcirc MEANING OF $x \rightarrow a$

 $x \to a$ is read as 'x tends to a' or 'x approaches a', where x is a variable. It can be changed so that its value comes nearer and nearer to a, 0 < |x - a|, where (i) $x \ne a$ and (ii) |x - a| becomes smaller and smaller as we please.

C LIMIT

We say that $\lim_{x\to a} f(x) = l$, if for each $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f(x) - l| < \varepsilon$, whenever $|x - a| < \delta$. This means, smaller is the difference between x and a, smaller will be the difference between f(x) and l.

INDETERMINATE FORMS

If a function f(x) takes any of the following forms when x = a, then we say that f(x) is indeterminate at x = a.

- 1. 0/0
- 2. ∞/∞
- 3. ∞ ∞
- 4. $0 \times \infty$

- 5. 1[∞]
- 6. 0^0
- 7. ∞^0

ALGEBRA OF LIMITS

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [kf(x)] = k \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x) \cdot g(x)] = k \left[\lim_{x \to a} f(x) \right] \cdot \left[\lim_{x \to a} g(x) \right]$$

5.
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \text{ when } \lim_{x \to a} g(x) \neq 0$$

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

7.
$$\lim_{x \to a} e^{f(x)} = e^{\lim_{x \to a} f(x)}$$

8.
$$\lim_{x \to a} [f(x)]^{g(x)} = e^{\left[\lim_{x \to a} g(x) \log_e f(x)\right]}$$

9.
$$\log \left[\lim_{x \to a} f(x) \right] = \lim_{x \to a} \left[\log f(x) \right]$$
, when $\lim_{x \to a} f(x) > 0$

S ONE-SIDED LIMITS

This method is applied to find the limit at x = a when the function is defined differently for x > a, x = a and x < a.

RIGHT-HAND LIMIT

We say that the right-hand limit of f(x) at x = a is A if $f(x) \to A$ when $x \to a$ through values greater than a, and we write

$$\lim_{x \to a^+} f(x) = A \quad \text{or} \quad \lim_{x \to a+0} f(x) = A \quad \text{or} \quad f(a+0) = A$$

\longrightarrow WORKING RULE FOR FINDING $\lim_{X \to a^+} f(X)$

Replace x by (a + h) and take the limit as $h \to 0$, i.e. $\lim_{x \to a^+} f(x) = \lim_{h \to 0} f(a+h)$.

∠ △ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ △ ∠ △

We say that the left-hand limit of f(x) at x = a is B if $f(x) \rightarrow B$ when $x \rightarrow a$ through values less than a, and we write

$$\lim_{x \to a^{-}} f(x) = B \text{ or } \lim_{x \to a^{-}} f(x) = B \text{ or } f(a - 0) = B$$

S WORKING RULE FOR FINDING $\lim_{x \to a^{-}} f(x)$

Replace x by (a - h) and take the limit as $h \to 0$, i.e. $\lim_{x \to a^{-}} f(x) = \lim_{h \to 0} f(a - h)$.

LIMIT OF A FUNCTION DERIVED FROM ONE-SIDED LIMITS

We say that $\lim_{x \to a} f(x) = l$ if $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = l$. However, if $\lim_{x \to a^+} f(x) \neq \lim_{x \to a^-} f(x)$ or if any of the limits $\lim_{x \to a^+} f(x)$ or $\lim_{x \to a^-} f(x)$ does not exist, then we say that $\lim_{x \to a} f(x)$ does not exist.

Illustration 1. Evaluate $\lim_{x\to 1} \frac{x^3 - x^2 \log x + \log x - 1}{x^2 - 1}$.

Solution: The given limit

$$= \lim_{x \to 1} \frac{(x^3 - 1) - (x^2 - 1)\log x}{x^2 - 1}$$

$$= \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1) - (x - 1)(x + 1)\log x}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{(x - 1)[x^2 + x + 1 - (x + 1)\log x]}{(x - 1)(x + 1)}$$

$$= \frac{1^2 + 1 + 1 - (1 + 1)\log 1}{(1 + 1)} = \frac{3}{2}.$$

SOME IMPORTANT LIMITS

- 1. If f(x) is a polynomial, then $\lim_{x\to a} f(x) = f(a)$
- 2. If $a \neq 0$ and $n \in Q$, then $\lim_{x \to a} \left(\frac{x^n a^n}{x a} \right) = na^{n-1}$

3.
$$\lim_{x \to a} \left(\frac{x^m - a^m}{x^n - a^n} \right) = \frac{m}{n} a^{m-n}$$

4.
$$\lim_{x \to 0} \frac{\sin x}{x} = 1 = \lim_{x \to 0} \frac{x}{\sin x}$$

5.
$$\lim_{x \to 0} \frac{\tan x}{x} = 1 = \lim_{x \to 0} \frac{x}{\tan x}$$

6.
$$\lim_{x\to 0} \frac{\sin^{-1} x}{x} = 1 = \lim_{x\to 0} \frac{x}{\sin^{-1} x}$$

7.
$$\lim_{x \to 0} \frac{\tan^{-1} x}{x} = 1 = \lim_{x \to 0} \frac{x}{\tan^{-1} x}$$

8.
$$\lim_{x\to 0} \frac{\sin x^0}{x} = \frac{\pi}{180}$$

9.
$$\lim_{x\to 0} \cos x = 1$$

$$10. \quad \lim_{x \to a} \frac{\sin(x-a)}{x-a} = 1$$

11.
$$\lim_{x \to a} \frac{\tan(x-a)}{x-a} = 1$$

12.
$$\lim_{x \to a} \sin^{-1} x = \sin^{-1} a, |a| \le 1$$

11.3

14.
$$\lim_{x \to a} \tan^{-1} x = \tan^{-1} a, -\infty < a < \infty$$

∠ L'HÔPITAL'S RULE

If $\frac{f(x)}{g(x)}$ is of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ when x = a, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

This is known as L'Hôpital's rule

SOME IMPORTANT EXPANSIONS THAT ARE USEFUL FOR FINDING LIMITS

1. For |y| < 1, $(1+x)^n$

$$= \left[1 + nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{3}x^3 \dots\right]$$

2. $\left(\frac{x^n - a^n}{x - a}\right) = (x^{n-1} + ax^{n-2} + a^2x^{n-3} + \dots + a^{n-1})$

3.
$$e^x = \left[1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n} + \dots\right]$$

4.
$$a^x = \left[1 + x(\log x) + \frac{x^2}{2}(\log a)^2 + \cdots\right]$$

5.
$$\log(1+x) = \left[x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots\right]$$

6.
$$\sin x = \left[x - \frac{x^3}{\underline{13}} + \frac{x^5}{\underline{15}} - \frac{x^7}{\underline{17}} + \cdots \right]$$

7.
$$\cos x = \left[1 - \frac{x^2}{2} + \frac{x^4}{4} - \frac{x^6}{6} + \cdots\right]$$

8.
$$\tan x = \left[x - \frac{x^3}{3} + \frac{2x^5}{15} + \cdots \right]$$

9.
$$\tan^{-1} x = \left[x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots \right]$$

10.
$$e^{-x} = \left[1 - x + \frac{x^2}{2} - \frac{x^3}{3} + \cdots\right]$$

11.
$$\log(1-x) = -\left[x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots\right]$$

12.
$$\sec x = \left[1 + \frac{x^2}{2} + \frac{5x^4}{4} + \cdots\right]$$

13.
$$\sin^{-1} x = \left[x - \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^5}{5} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^7}{7} + \cdots \right]$$

S LOGARITHMIC LIMITS

We use the series $\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots \infty$, where $-1 < x \le 1$ and expansion is true only if base is e.

1.
$$\lim_{x\to 0} \frac{\log(1+x)}{x} = 1$$

2.
$$\lim_{x \to a} \log_e x = 1$$

3.
$$\lim_{x\to 0} \frac{\log(1-x)}{x} = -1$$

4.
$$\lim_{x \to 0} \frac{\log_a (1+x)}{x} = \log_a e; a > 0, \neq 1$$

EXPONENTIAL LIMITS

Based on series expansion, we use the series

$$e^x = 1 + x + \frac{x^2}{|2|} + \frac{x^3}{|3|} + \dots \infty$$

1.
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

2.
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \log_e a$$

3.
$$\lim_{x \to 0} \frac{e^{\lambda x} - 1}{x} = \lambda \ (\lambda \neq 0)$$

$>\!\!\!\!>$ BASED ON THE FORM 1 $^\circ$

To evaluate the exponential form 1^{∞} , we use the following results:

If
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
, then

$$\lim_{x \to a} [1 + f(x)]^{1/g(x)} = \lim_{e^{x \to a}} \frac{f(x)}{g(x)} \text{ or }$$

when $\lim_{x\to a} f(x) = 1$ and $\lim_{x\to a} g(x) = \infty$, then

$$\lim_{x \to a} [f(x)]^{g(x)} = \left[\lim_{x \to a} f(x)\right]^{\lim_{x \to a} g(x)}$$

1.
$$\lim_{x \to 0} (1+x)^{1/x} = e^{-x}$$

$$2. \quad \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$3. \quad \lim_{x \to 0} (1 + \lambda x)^{1/x} = e^{\lambda}$$

$$4. \quad \lim_{x \to \infty} \left(1 + \frac{\lambda}{x} \right)^x = e^{\lambda}$$

5.
$$\lim_{x \to \infty} a^x = \begin{cases} \infty, & \text{if } a > 1 \\ 0, & \text{if } a < 1 \end{cases}$$

Illustration 2. Evaluate $\lim_{x \to \pm \infty} x(\sqrt{x^2 + k} - x), \ k > 0$.

Solution:
$$\lim_{x \to \pm \infty} x(\sqrt{x^2 + k} - x) \frac{(\sqrt{x^2 + k} + x)}{(\sqrt{x^2 + k} + x)}$$
$$= \lim_{x \to \pm \infty} \frac{x(x^2 + k - x^2)}{(\sqrt{x^2 + k} + x)}$$
$$= \lim_{x \to \pm \infty} \frac{xk}{\left| |x| \sqrt{\left(1 + \frac{k}{x^2}\right)} \right| + x}$$

Here we have to consider two cases:

(i) When $x \to \infty$; |x| = -x, then we have

$$\lim_{x \to \infty} \frac{xk}{x\sqrt{\left(1 + \frac{k}{x^2}\right) + x}} = \lim_{x \to \infty} \frac{xk}{x\sqrt{\left(1 + \frac{k}{x^2}\right) + 1}} = \frac{k}{2}$$

(ii) When $x \to -\infty$; |x| = -x, then we have

$$\lim_{x \to -\infty} \frac{xk}{-x\sqrt{\left(1 + \frac{k}{x^2}\right) + x}} = \lim_{x \to -\infty} \frac{xk}{x\left[-\sqrt{\left(1 + \frac{k}{x^2}\right) + 1}\right]}$$
$$= \frac{k}{-1^- + 1} = \frac{k}{0^-} \to -\infty.$$

\mathcal{F} TO FIND $\lim_{x\to\infty} f(x)$

Replace x by 1/y and take the limit as $y \to 0$.

Some Limits

1. If
$$|x| < 1$$
, then $\lim_{n \to \infty} x^n = \infty$

2. If
$$x > 1$$
, then $\lim_{n \to \infty} x^n = \infty$

$$3. \quad \lim_{x \to \infty} e^x = \infty$$

4.
$$\lim_{x \to 0} e^{-x} = 0$$

5.
$$\lim_{x\to\infty} \log x = \infty$$

6.
$$\lim_{n \to \infty} \frac{1}{n} = 0$$
 and $\lim_{n \to \infty} \frac{1}{n^2} = 0$

$$7. \quad \lim_{n \to \infty} x^{1/n} = 1$$

8.
$$\lim_{x \to \infty} \frac{\sin x}{x} = \lim_{x \to \infty} \frac{\cos x}{x}$$

9.
$$\lim_{x \to \infty} \frac{\sin 1/x}{1/x} = 1$$

S USEFUL TRIGONOMETRIC RESULTS

1.
$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

2.
$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

3.
$$cos(A + B) = cos A cos B - sin A sin B$$

4.
$$cos(A-B) = cos A cos B + sin A sin B$$

5.
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

6.
$$\tan (A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

7.
$$\sin C + \sin D = 2\sin \frac{C+D}{2}\cos \frac{C-D}{2}$$

8.
$$\sin C - \sin D = 2\cos\frac{C+D}{2}\sin\frac{C-D}{2}$$

9.
$$\cos C + \cos D = 2\cos\frac{C+D}{2}\cos\frac{C-D}{2}$$

10.
$$\cos C - \cos D = -2\sin\frac{C+D}{2}\sin\frac{C-D}{2}$$

CONTINUITY AT A POINT

A function f(x) is said to be continuous at x = a if $\lim_{x \to a^{-}} f(a) = \lim_{x \to a^{+}} f(x) = f(a)$, i.e. LHL = RHL = value of the function at a, i.e. $\lim_{x \to a} f(x) = f(a)$. If f(x) is not continuous at x = a, we say that f(x) is discontinuous at x = a.

Illustration 3. Discuss the continuity of the function $[\cos x]$ at $x = (\pi/2)$, where [] denotes the greatest integer function.

Solution: LHL =
$$\lim_{x \to (\pi/2)^{-}} [\cos x] = 0$$

RHL = $\lim_{x \to (\pi/2)^{+}} [\cos x] = -1$
 $f\left(\frac{\pi}{2}\right) = \left[\cos\frac{\pi}{2}\right] = 0$

Clearly, LHL ≠ RHL.

So, the function is discontinuous at $x = (\pi/2)$.

CONTINUITY IN AN OPEN INTERVAL

A function f(x) is said to be continuous in an open interval (a, b) if it is continuous at each and every point of (a, b), i.e. y = [x] is continuous in (1, 2).

CONTINUITY IN A CLOSED INTERVAL

A function f(x) is said to be continuous in a closed interval [a, b] if

- (i) it is continuous in (a, b).
- (ii) the value of the function at b is equal to the left-hand limit at b, i.e. $f(b) = \lim_{x \to a} f(x)$.
- (iii) the value of the function at a is equal to the right-hand limit at a, i.e. $f(a) = \lim_{x \to a^+} f(x)$.

Illustration 4. Check the continuity of the function $f(x) = [x^2] - [x]^2$ for all $x \in \mathbb{R}$ at the end points of the interval [-1,0], where [] denotes the greatest integer function.

Solution: Continuity at x = -1

$$f(-1) = [(-1)^{2}] - [-1]^{2} = [1] - (-1)^{2} = 1 - 1 = 0$$

$$RHL = \lim_{x \to -1^{+}} \{ [x^{2}] - [x]^{2} \} = 0 - 1 = -1$$

So, $f(-1) \neq RHL$

Continuity at x = 0

$$f(0) = [(0)^{2}] - [0]^{2} = 0 - 0 = 0$$

$$LHL = \lim_{x \to 0^{+}} \{ [x^{2}] - [x]^{2} \} = 0 - 1 = -1$$

So, $f(0) \neq LHL$

Hence, the function is not continuous at the end points of the interval [-1, 0].

PROPERTIES OF CONTINUOUS FUNCTIONS

Let f(x) and g(x) be continuous functions at x = a. Then,

- (i) cf(x) is continuous at x = a, where c is any constant.
- (ii) $f(x) \pm g(x)$ is continuous at x = a.
- (iii) $f(x) \cdot g(x)$ is continuous at x = a.
- (iv) f(x)/g(x) is continuous at x = a, provided $g(a) \neq 0$.
- (v) If f(x) is continuous on [a, b], such that f(a) and f(b) are of opposite signs, then there exists at least one solution of the equation f(x) = 0 in the open interval (a, b).

S DISCONTINUOUS FUNCTION

If f(x) is not continuous at x = a, then f(x) is said to be discontinuous at x = a and this point is called a point of discontinuity.

TYPES OF DISCONTINUITY

Removable Discontinuity

A function f is said to possess removable discontinuity if at x = a,

$$L=R\neq V$$

$$\Rightarrow \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) \neq f(a)$$

i.e. the left-hand limit and the right-hand limit at x = a exist and are equal, but they are not equal to the value of the function at x = a. This is shown in Fig. 11.1.

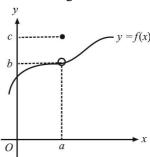


Fig. 11.1

Irremovable Discontinuity

A function f is said to possess irremovable discontinuity if at x = a, the left-hand limit is not equal to the right-hand limit, i.e. $L \neq R$.

$$\Rightarrow \lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$$

Discontinuity of First Kind

A function f is said to possess discontinuity of first kind at x = a if at x = a, both the left-hand limit and the right-hand limit exist finitely but are unequal.

This can be illustrated with the help of Fig. 11.2.

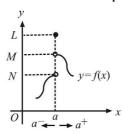


Fig. 11.2

Here, $\lim_{x \to a^{-}} f(x) = N$ and $\lim_{x \to a^{+}} f(x) = M$. Also, f(a) = L. Clearly, from the figure, $N \neq M$.

Discontinuity of Second Kind

A function f is said to possess discontinuity of second kind at x = a if at x = a, both the left-hand limit and the right-hand limit do not exist and are infinite. This can be illustrated with the help of Fig. 11.3.

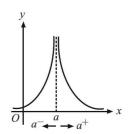


Fig. 11.3

DIFFERENTIABILITY

Let f(x) be a real-valued function defined on an interval (a, b) and $x_1 \in (a, b)$. Then the function f(x) is said to be differentiable (or derivable) at x_1 if

$$\lim_{h \to 0} \frac{f(x_1 + h) - f(x_1)}{(x_1 + h) - (x_1)} = \frac{\text{small change in } y}{\text{small change in } x}$$

or equivalently, $\lim_{x \to x_1} \frac{f(x) - f(x_1)}{x - x_1}$.

The value of the limit is denoted by $f'(x_1)$ or by $Df(x_1)$ and is usually called *derivative* of f(x).

TYPES OF DERIVATIVES

Left-hand Derivatives

Regressive derivative or left-hand derivative of f(x) at $x = x_1$ is given by

LHD =
$$Lf'(x_1) = \lim_{h \to 0} \frac{f(x_1 - h) - f(x_1)}{(x_1 - h) - (x_1)}$$

Right-hand Derivatives

Progressive derivative or right-hand derivative of f(x) at $x = x_1$ is given by

RHD =
$$Rf'(x_1) = \lim_{h \to 0} \frac{f(x_1 + h) - f(x_1)}{(x_1 + h) - (x_1)}$$

Illustration 5. Prove that the function f(x) = |x| + |x-1| is not differentiable at x = 1.

Solution:
$$f(x) = |x| + |x-1| = \begin{cases} -2x+1, & x < 0 \\ 1, & 0 \le x < 1 \\ 2x-1, & 1 \le x \end{cases}$$

LHL =
$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} 1 = 1$$

RHL = $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2x - 1) = 1$

and

$$f(1) = 2 \times 1 - 1 = 1$$

$$\therefore \quad \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

f(x) is continuous at x = 1,

Now,

$$Rf'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{2(1+h) - 1 - 1}{h} = 2$$

$$Lf'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{-h}$$

$$= \lim_{h \to 0} \frac{1 - 1}{-h} = 0$$

 \therefore $Rf'(1) \neq Lf'(1)$

 \therefore f(x) is not differentiable at x = 1.

RELATION BETWEEN CONTINUITY AND DIFFERENTIABILITY

If a function is differentiable at a point, then it is necessarily continuous at that point. But the converse is not necessarily true, i.e. every continuous function need not be differentiable.

PROPERTIES OF DIFFERENTIABLE FUNCTIONS

- 1. Every polynomial function is differentiable at each $x \in \mathbb{R}$.
- 2. The exponential function a^x , a > 0, is differentiable at each $x \in \mathbb{R}$.
- 3. Every constant function is differentiable at each $x \in \mathbb{R}$
- 4. The logarithmic function is differentiable at each point in its domain.
- 5. Trigonometric and inverse trigonometric functions are differentiable in their respective domains.
- 6. The sum, difference, product and quotient of two differentiable functions are differentiable.
- 7. The composition of a differentiable function is a differentiable function.
- 8. Absolute functions are always continuous throughout but not differentiable at their critical points.

SOLVED PROBLEMS

1. The value of
$$\lim_{x\to 0^+} \frac{1}{3x}$$
 is

(b)
$$-1$$

(c) 0

 $(d) + \infty$

Ans. (d)

Solution: Expression is $\lim_{x\to 0^+} \frac{1}{3x}$.

We know that $\lim_{x\to 0^+} \frac{1}{3x} = \frac{1}{3\times 0} = \frac{1}{0} = +\infty$

2. The right-hand limit of the function $\sec x$ at $x = -(\pi/2)$

(b) -1

(a) -∞

(c) 0

Ans. (d)

(d) ∞

Solution: Function $f(x) = \sec x$ and point $x = -(\pi/2)$. We know that right-hand limit of the function f(x) at $x = -(\pi/2)$ is

$$\lim_{x \to [-(\pi/2)]^+} f(x) = \lim_{x \to [-(\pi/2)]} \sec x.$$