From (iii), the slope of the tangent to the curve (i) at $P(a, a) = -\frac{a}{a} = -1$ and from (iv), the slope of the tangent to the curve (ii) at $P(a, a) = -\frac{a}{a} = -1$.

Thus, the slope of tangent to curve (i) at P = slope of tangent to curve (ii) at $P \Rightarrow \text{the given}$ curves touch at P(a, a).

Similarly, the given curves touch at the point Q(-a, -a).

Hence, the given curves touch each other.

Example 18. Show that the curves $x = y^2$ and xy = k cut orthogonally if $8k^2 = 1$.

Solution. The given curves are

The given curves are and
$$xy = k$$
 ...(ii) and $xy = k$...(iii)

Solving (i) and (ii) simultaneously for the points of intersection, we get

$$y^2 \cdot y = k \Rightarrow y^3 = k \Rightarrow y = k^{1/3}$$
.

From (i),
$$x = (k^{1/3})^2 \Rightarrow x = k^{2/3}$$
.

Thus, the two given curves intersect at the point $P(k^{2/3}, k^{1/3})$.

Differentiating (i) and (ii) w.r.t. x, we get
$$1 = 2y \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{1}{2y}$$
 ...(iii)

and
$$x \cdot \frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x}$$
 ...(iv)

From (*iii*), the slope of the tangent to curve (*i*) at $P = \frac{1}{2k^{1/3}}$.

From (*iv*), the slope of the tangent to curve (*ii*) at $P = -\frac{k^{1/3}}{k^{2/3}} = -\frac{1}{k^{1/3}}$.

Now, the given curves (i) and (ii) will cut orthogonally at P if

$$m_1 m_2 = -1 \Rightarrow \frac{1}{2k^{1/3}} \cdot \left(-\frac{1}{k^{1/3}}\right) = -1$$

$$\Rightarrow$$
 $2k^{2/3} = 1 \Rightarrow (2k^{2/3})^3 = 1^3 \Rightarrow 8k^2 = 1.$

Hence, the given curves will cut orthogonally if $8k^2 = 1$.

EXERCISE 6.2

- 1. What is the slope of the tangent to the following curves:
 - (i) $y = 3x^4 4x$ at x = 4?
 - (ii) $x^2 + 3y + y^2 = 5$ at the point (1, 1)?
 - (iii) $y = x^3 3x + 2$ at the point whose x-coordinate is 3?
- 2. What is the slope of the normal to the following curves:
 - (i) $y = x^3 5x^2 x + 1$ at the point (1, -4)? (ii) $y = 2x^2 + 3e^x$ at x = 0?
- 3. Find the point on the curve $y = x^2 2x + 3$ at which the tangent is parallel to x-axis.
- **4.** Find the slope of the tangent to the curve $y = \frac{x-1}{x-2}$ at x = 10.
- 5. Show that the tangents to the curve $y = 7x^3 + 11$ at the points where x = 2 and x = -2 are parallel.

- 6. Find the points on the curve $\frac{x^2}{4} + \frac{y^2}{25} = 1$ at which the tangents are
 - (a) parallel to x-axis
- (b) parallel to y-axis.
- 7. Find the points on the curve $y = x^3 3x^2 + 2x$ at which the tangent lines are parallel to the line
- 8. Find the equations of the tangent and the normal to each of the following curves at the given
 - (i) $y = x^3$ at (1, 1)
 - (ii) $y = x^4 6x^3 + 13x^2 10x + 5$ at (1, 3)
 - (iii) $y = x^4 6x^3 + 13x^2 10x + 5$ at (0, 5)
 - (iv) $y = x^2$ at (0, 0)
- 9. Find the equation of the normal to the curve $ay^2 = x^3$ at the point (am^2, am^3) .
- 10. Find the equations of the tangent and the normal to the curve $x^{2/3} + y^{2/3} = 2$ at (1, 1).
- 11. Find the equations of all lines having slope 2 and being tangents to the curve $y + \frac{2}{x^2} = 0.$
- 12. Find the equations of the normals to the curve $3x^2 y^2 = 8$ which are parallel to the line x + 3y = 4.
- 13. Find the equation of the normal to the curve $y = x + \frac{1}{x}$, x > 0, perpendicular to the line
- 14. Find the equation of the normal to the curve $x^2 = 4y$ which passes through the point (-1, 4).
- 15. Prove that the curves xy = 4 and $x^2 + y^2 = 8$ touch each other.
- 16. Find the condition that the curves $2x = y^2$ and 2xy = k intersect orthogonally.

Answers

(i)
$$764$$
 (ii) $-\frac{2}{5}$ (iii) 24

2. (i)
$$\frac{1}{8}$$
 (ii) $-\frac{1}{3}$

$$(ii) -\frac{1}{3}$$

4.
$$-\frac{1}{64}$$

6. (i)
$$(0,5)$$
, $(0,-5)$ (ii) $(2,0)$, $(-2,0)$

$$(ii)$$
 $(2,0), (-2,0)$

6. (i)
$$(0,5), (0,-5)$$

$$(ii)$$
 $(2,0), (-2,0)$

3. (i)
$$3x - y - 2 = 0$$
; $x + 3y - 4 = 0$

(iii)
$$10x + y - 5 = 0$$
; $x - 10y + 50 = 0$

9.
$$2x + 3my - am^2(2 + 3m^2) = 0$$

11.
$$y - 2x + 2 = 0$$
, $y - 2x + 10 = 0$

13.
$$8x + 6y - 31 = 0$$
 14. $x - y + 3 = 0$

14.
$$x - y + 3 = 0$$

(ii)
$$2x - y + 1 = 0$$
; $x + 2y - 7 = 0$

(iv)
$$y = 0; x = 0$$

10.
$$x + y - 2 = 0$$
; $x - y = 0$

12.
$$x + 3y + 8 = 0$$
, $x + 3y - 8 = 0$

16.
$$k^2 = 8$$

INCREASING AND DECREASING FUNCTIONS

In this section, we shall discuss monotonocity of functions. Monotonocity of a function is connected with the sign of its derivative. In determining the intervals of monotonocity of a function in its domain, we shall have to solve inequalities f'(x) > 0, $f'(x) \ge 0$, f'(x) < 0 and $f'(x) \le 0$. Therefore, we first study a procedure of solving inequalities.