$$\Rightarrow x < x^2 \Rightarrow 0 < x^2 - x$$

$$\Rightarrow x(x-1) > 0$$

Mark the numbers 0 and 1 on the real line.

By the method of intervals, the inequality (1) is satisfied when

$$x > 1$$
 or $x < 0$.

 \therefore The solution set is $(-\infty, 0) \cup (1, \infty)$.

Since $(x-4)^2 > 0$ for all $x \in \mathbb{R}$, $x \neq 4$.

$$\frac{x+3}{x-4} \ge 0 \implies (x+3)(x-4) \ge 0$$

$$\Rightarrow$$
 $(x-(-3))(x-4) \ge 0$

Mark the numbers -3 and 4 on the number line.

By the method of intervals, the inequality (1) is satisfied when $x \ge 4$ or $x \le -3$ but $x \ne 4$.

 \therefore The solution set is $(-\infty, -3] \cup (4, \infty)$.

Since $(x-2)^2 (x-4)^2 > 0$ for all $x \in \mathbb{R}, x \neq 2, 4$.

$$\frac{2x-3}{(x-2)(x-4)} \le 0 \implies (2x-3)(x-2)(x-4) \le 0$$

$$\Rightarrow 2\left(x-\frac{3}{2}\right)(x-2)(x-4) \le 0 \Rightarrow \left(x-\frac{3}{2}\right)(x-2)(x-4) \le 0 \qquad ...(1)$$

Mark the numbers $\frac{3}{2}$, 2 and 4 on the number line.

By the method of intervals, the inequality (1) is satisfied when $x \le \frac{3}{2}$ or $2 \le x \le 4$ but $x \ne 2, 4$.

Fig. 6.12.

 \therefore The solution set is $\left(-\infty, \frac{3}{2}\right] \cup (2, 4)$.

EXERCISE 6.3

1. Solve for x:

$$(i) x(x-2) (x-5) (x+3) > 0$$

- (ii) $x^4 5x^2 + 4 \ge 0$.
- 2. Find all real values of x which satisfy

(i)
$$x^3(x-1)(x-2) > 0$$

(ii) $x^2(x-1)(x-2) \le 0$.

3. Solve for x:

$$(i) \ \frac{1}{x-2} \le 1$$

(ii)
$$\frac{(x+1)(x-3)}{x+2} \ge 0$$
.

Fig. 6.11.

(multiplying by $(x-4)^2$)

...(1)

...(1)

Answers

1. (i) $(-\infty, -3) \cup (0, 2) \cup (5, \infty)$

2. (i) $(0, 1) \cup (2, \infty)$

3. (i) $(-\infty, 2) \cup [3, \infty)$

(ii) $(-\infty, -2] \cup [-1, 1] \cup [2, \infty)$

(ii) $\{0\} \cup [1, 2]$

(ii) $(-2, -1] \cup [3, \infty)$

Increasing and Decreasing Functions

Let f be a real valued function defined in an interval D (a subset of R), then f is called an increasing function in an interval D_1 (a subset of D) iff for all $x_1, x_2 \in D_1$, $x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$ and f is called a strictly increasing function in D_1 iff for all $x_1, x_2 \in D_1, x_1 < x_2$ $\Rightarrow f(x_1) < f(x_2).$

Analogously, f is called a decreasing function in an interval D_2 (a subset of D) iff for all $x_1, x_2 \in D_2, x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$ and f is called a strictly decreasing function in D_2 iff for all $x_1, x_2 \in D_2, x_1 < x_2 \Rightarrow f(x_1) > f(x_2).$

In particular, if $D_1 = D$ then f is called an **increasing function** iff for all $x_1, x_2 \in D$, $x_1 < x_2$ $\Rightarrow f(x_1) \leq f(x_2)$; and f is called strictly increasing function iff for all $x_1, x_2 \in D$, $x_1 < x_2$ $\Rightarrow f(x_1) < f(x_2)$. Analogously, if $D_2 = D$ then f is called a **decreasing function** iff for all $x_1, x_2 \in D$, $x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$; and f is called **strictly decreasing function** iff for all $x_1, x_2 \in D$, $x_1 < x_2 \Rightarrow f(x_1) > f(x_2).$

A function which is either (strictly) increasing or (strictly) decreasing is called a (strictly) monotonic function.

Conditions for an Increasing or a Decreasing Function

Now we shall see how to use derivative of a function to determine where it is increasing and it is decreasing.

In fact, we have:

- (i) If a function f is increasing in $D_1(a \text{ subset of } D_f)$, then $f'(x) \ge 0$ for all $x \in D_1$.
- (ii) If a function f is decreasing in D_2 (a subset of D_f), then $f'(x) \le 0$ for all $x \in D_2$.