10

Functions

Definition of Function	☐ Periodic Functions
Working Rules for Finding Domain of a Function	☐ Properties of Periodic Functions
Working Rules for Finding Range of a Function	☐ Composition of Functions
Types of Functions	☐ Properties of Composite Functions
Even Odd Functions	

G DEFINITION OF FUNCTION

Function: Let X and Y be two nonempty sets. A function f, defined from X to Y, is a rule or a collection of rules, which associates to each element x in X a unique element y in Y.

Symbolically, we write it as $f: X \to Y$, which is read as "function defined from the set X to the set Y".

- (i) The unique element y of Y is called the value of f at x (the image of x under f). It is written as f(x). Thus, y = f(x).
- (ii) The element x of X is called pre-image (or inverse image) of y.
- (iii) The set X is called the domain of f.
- (iv) The set Y is called the co-domain of f.
- (v) The set consisting of all images of the elements of X under f is called the range of f. This is denoted by f(x). Thus, the range of $f = f(x) = \{f(x) : \text{ for all } x \in X\}$.

This is a subset of Y, which may or may not be equal to Y.

Note A function is also termed mapping or correspondence or transformation. *Examples:*

- (i) Let $A = \{1, 2, 3, 4\}$ and $B = \{2, 4, 6, 8, 10\}$. Here the rule, i.e. f, which associates to each element x in A, the element 2x in B is a function from A to B. The rule written as f(x) = 2x is depicted in Fig. 10.1.
- (ii) Let $A = \{a, b, c, d, e\}$ and $B = \{p, q, r\}$. Here the rule, which is depicted in Fig. 10.2, is not a function from A to B because the elements a and c in A have been associated with two elements p and q each of B.

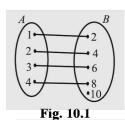


Fig. 10.2

WORKING RULES FOR FINDING DOMAIN OF A FUNCTION

- 1. Expression under even root (i.e. square root, fourth root) is greater than or equal to zero.
- 2. Denominator should not be zero.
- 3. If the domains of y = f(x) and y = g(x) are D_1 and D_2 respectively, then the domain of $f(x) \pm g(x)$ or

$$f(x) \cdot g(x)$$
 is $D_1 \cap D_2$, while domain of $\frac{f(x)}{g(x)}$ is $D_1 \cap D_2 - \{x : g(x) = 0\}$.

Illustration 1. Find the domain of $f(x) = \sqrt{\cos(\sin x)}$.

Solution:
$$f(x) = \sqrt{\cos(\sin x)}$$
 is defined if

$$\cos(\sin x) \ge 0 \tag{i}$$

As we know $-1 \le \sin x \le 1$ for all x.

$$\cos\theta \ge 0$$

[Here, $\theta = \sin x$ lies in the third and fourth quadrants.] i.e. $\cos(\sin x) \ge 0$ for all x, i.e. $x \in \mathbb{R}$

Thus, the domain of $f(x) \in \mathbb{R}$.

WORKING RULES FOR FINDING RANGE OF A FUNCTION

Step 1: Find the domain for the function y = f(x).

Step 2: Change the function y = f(x) as x = f(y).

Step 3: Solve $x = \phi(y)$.

Step 4: Find the values of y for x in the domain of f.

Step 5: The set of values of y in step 4 is the range of f(x).

Illustration 2. Find the range of $f(x) = \sin^2 x - \sin x + 1$.

Solution:
$$f(x) = \sin^2 x - \sin x + 1 = \left(\sin x - \frac{1}{2}\right)^2 + \frac{3}{4}$$

Now,
$$-1 \le \sin x \le 1$$
 \Rightarrow $-\frac{3}{2} \le \sin x - \frac{1}{2} \le \frac{1}{2}$

$$\Rightarrow 0 \le \left(\sin x - \frac{1}{2}\right)^2 \le \frac{9}{4}$$

$$\Rightarrow \frac{3}{4} \le \left(\sin x - \frac{1}{2}\right)^2 + \frac{3}{4} \le 3$$

Hence, the range is $\left[\frac{3}{4}, 3\right]$.

TYPES OF FUNCTIONS

1. Constant Function

A function which does not change as its parameters vary, i.e. the function whose rate of change is zero, is called a *constant function*. In short, we can say that a constant function is a function that always gives or returns the same value.

Domain: $x \in (-\infty, \infty)$, i.e. $x \in \mathbb{R}$

Range: $y \in \{c\}$

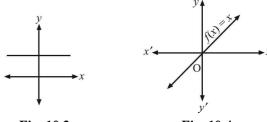


Fig. 10.3

Fig. 10.4

2. Identity Function

An identity function is a function of the form y = f(x) = x, which is a straight line passing through the origin and having slope unity.

Domain: $x \in (-\infty, \infty)$, i.e. $x \in \mathbb{R}$ **Range:** $y \in (-\infty, \infty)$, i.e. $y \in \mathbb{R}$

3. Polynomial Function

A polynomial function is a function of the form

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$

Here the value of n must be a non-negative integer, i.e. it must be a whole number and a_a , a_1 , a_2 , ..., $a_n \in \mathbb{R}$. The degree of the polynomial is the highest value for n, where $a_n \neq 0$, i.e. n.

Domain: The entire number line, i.e. $x \in \mathbb{R}$ Range: Varies from function to function.

4. Rational Function

If h(x) and g(x) are polynomial functions, $g(x) \neq 0$, then the function $f(x) = \frac{h(x)}{g(x)}$ is known as a *rational function*.

Domain: $x \in \mathbb{R} - \{x : g(x) = 0\}$

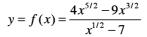
Range: Varies from function to function.

5. Irrational Function

An *irrational function* is a function of the form

$$y = \left\{ f(x) \right\}^{p/q}$$

where p and q are integers, have no common factor and also $q \neq 0$, q > 0. For example,



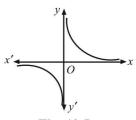


Fig. 10.5

6. Reciprocal Function

A reciprocal function is the inverse of an identity function, such that $y = f(x) = \frac{1}{x}$, which is an equation of a rectangular hyperbola whose asymptotes (here x-axis and y-axis) intersect at right angles.

Domain: $x \in \mathbb{R} - \{0\}$ **Range:** $y \in \mathbb{R} - \{0\}$

7. Exponential Function

A function of the form $f(x) = a^x$ is an exponential function. It is the inverse of a logarithmic function. The value of the function depends upon the value of a.

For $0 \le a \le 1$, the function decreases, and for $a \ge 1$, the function increases.

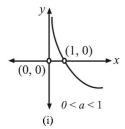
Domain: $x \in \mathbb{R}$ **Range:** $y \in \mathbb{R}^+$

8. Logarithmic Function

A function of the form $f(x) = \log_a x$ is a *logarithmic function*. The value of the function depends upon the value of a. For 0 < a < 1, the function decreases, and for a > 1, the function increases.

Domain: x > 0, i.e. $x \in (0, \infty)$

Range: $y \in \mathbb{R}$



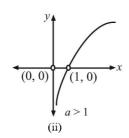


Fig. 10.6

8.1 Properties of a logarithmic function

1.
$$\log_e(xy) = \log_e x + \log_e y$$
 $x, y > 0$

2.
$$\log_e \left(\frac{x}{y}\right) = \log_e x - \log_e y$$
 $x, y > 0$

$$3. \log_a x^a = a \log_a x \qquad x > 0$$

4.
$$\log_b a = \frac{\log_c a}{\log_c b}$$
, where c is any constant such that

$$c \in (0, \infty) - \{1\}$$
. Also, $a, b > 0$

(i)
$$\log_a a = 1$$

(ii)
$$\log_b a = \frac{1}{\log_a b}$$

$$5. \quad a^{\log_a b} = b$$

6. If
$$\log_b a = c$$
, then $a = b^c$, where $a > 0$ and $b \in (0, \infty) - \{1\}$

$$7. \quad a^{\log_c b} = b^{\log_c a}$$

8. If
$$\log_a x > \log_a y$$
, and if $a > 1$ then $x > y$

i.e. for a > 1, the inequality remains the same, else if 0 < a < 1 then x < y, and for 0 < a < 1, the inequality gets reversed.

Illustration 3. Find the domain of the function

$$f(x) = \left[\log_{10}\left(\frac{5x - x^2}{4}\right)\right]^{1/2}.$$

Solution:
$$f(x) = \left[\log_{10} \left(\frac{5x - x^2}{4} \right) \right]^{1/2}$$
 (i)

From (i), clearly f(x) is defined for those values of x for which

$$\log_{10}\left\lceil\frac{5x-x^2}{4}\right\rceil \ge 0.$$

$$\Rightarrow \left(\frac{5x - x^2}{4}\right) \ge 10^0 \Rightarrow \left(\frac{5x - x^2}{4}\right) \ge 1$$

Hence, the domain of the function is [1, 4].

9. Trigonometric Function

A function of trigonometric ratios is known as *trigonometric* function.

Function	Domain	Range
sin x	\mathbb{R}	[-1, 1]
cos x	\mathbb{R}	[-1, 1]
tan x	$\mathbb{R} - \left\{ (2n+1)\frac{\pi}{2} : n \in I \right\}$	\mathbb{R}
cot x	$\mathbb{R} - \{n\pi : n \in I\}$	\mathbb{R}
sec x	$\mathbb{R} - \left\{ (2n+1)\frac{\pi}{2} : n \in I \right\}$	$(-\infty,-1]\cup[1,\infty)$
cosec x	$\mathbb{R}-\big\{n\pi:n\in I\big\}$	$(-\infty,-1] \cup [1,\infty)$

10. Inverse Trigonometric Function

A function involving inverse trigonometric ratios is known as *inverse trigonometric function*.

Function	D om ain	Range
$\sin^{-1} x$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$\cos^{-1} x$	[-1, 1]	$[0,\pi]$
tan ⁻¹ x	\mathbb{R}	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
$cosec^{-1} x$	$(-\infty,-1]\cup[1,\infty)$	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$
$sec^{-1} x$	$(-\infty,-1] \cup [1,\infty)$	$[0,\pi]-\left\{\frac{\pi}{2}\right\}$
$\cot^{-1} x$	\mathbb{R}	$(0,\pi)$

11. Modulus Function

A function v = f(x) = |x| is known as modulus function.

$$y = f(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Domain: $f(x) = x \in \mathbb{R}$

Range: $f(x) = [0, \infty)$

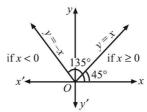


Fig. 10.7

11.1 Properties of a modulus function

- 1. For any real number x, $\sqrt{x^2} = |x|$.
- 2. If a, b are positive real numbers, then

(i)
$$x^2 \le a^2 \Leftrightarrow |x| \le a \Leftrightarrow -a \le x \le a$$

(ii)
$$x^2 \ge a^2 \Leftrightarrow |x| \ge a \Leftrightarrow x \le -a \text{ or } x \ge a$$

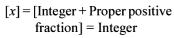
(iii)
$$a^2 \le x^2 \le b^2 \Leftrightarrow a \le |x| \le b \Leftrightarrow x \in [-b, -a] \cup [a, b]$$

3.
$$|x+y| \ge ||x|-|y||$$

4.
$$|x \pm y| \le |x| + |y|$$

12. Greatest Integer Function

The greatest integer function is denoted as y = f(x) = [x], where [x] means the greatest integer n, which is less than or equal to x, i.e. $n \le x$.



For example,

$$[4.2] = [4 + 0.2] = 4$$

 $[-4.2] = [-5 + 0.8] = -5$

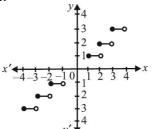


Fig. 10.8

12.1 Properties of a greatest integer function

- 1. If [x] = x, then x must belong to the set of integers
- 2. [x + I] = [x] + [I] = [x] + I
- 3. $[x + y] \ge [x] + [y]$
- 4. If $[f(x)] \ge I$, then $f(x) \ge I$ If $[f(x)] \le I$, then f(x) < I + 1

5.
$$[-x] = \begin{cases} -[x] & x \in I \\ -[x] - 1 & x \notin I \end{cases}$$
 i.e. $[x] + [-x] = 0$ i.e. $[x] + [-x] = -1$

i.e.
$$[x] + [-x] = 0$$

5.
$$[-x] = \begin{cases} [x] & x \in I \\ -[x] - 1 & x \notin I \end{cases}$$

i.e.
$$[x] + [-x] = -1$$

13. Smallest Integer Function (Ceiling Function)

For any real number x, we use the symbol $\lceil x \rceil$ to denote the smallest integer greater than or equal to x.

The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \lceil x \rceil$ for all $x \in \mathbb{R}$ is called the smallest integer function or the ceiling function. It is also a step function.

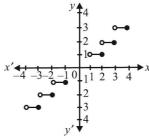


Fig. 10.9

Domain: $x \in \mathbb{R}$ Range: $y \in I$

14. Fractional Part Function

 $y = f(x) = \{x\}$, by definition. Mathematically,

$$\{x\} = x - [x]$$

It always returns the fractional part of the variable and is always positive.

Domain: $x \in \mathbb{R}$ **Range:** $y \in [0, 1)$

14.1 Properties of a fractional part function

1. If $0 \le x < 1$

then
$$\{x\} = x$$

2. If $x \in I$

then
$$\{x\} = 0$$

3. If $x \notin I$ and x > 0

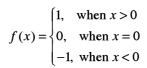
then
$$-\{x\} = 1 - \{x\}$$

15. Signum Function

This function is defined by

$$f(x) = \begin{cases} \frac{|x|}{x}, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$$

Thus, we have



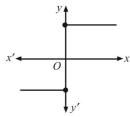


Fig. 10.11

Domain: $x \in \mathbb{R}$ **Range:** $y \in \{-1, 0, 1\}$

EVEN ODD FUNCTIONS

1. Even function: A function f is said to be an even function of x if f(-x) = f(x). For example,

 $f(x) = x^2 + 4$, $f(x) = 3\cos x - 5$, etc. are all even functions of x.

2. Odd function: A function f is said to be an odd function of x if f(-x) = -f(x). For example,

 $f(x) = x^3 + 7x$, $f(x) = 7\sin^3 x + \tan x$, etc. are all odd functions of x.

3. Extension of a function: If a function f(x) is defined in [0, a], then $0 \le x \le a \implies -a \le -x \le 0$ $\Rightarrow x \in [-a, 0].$

We define f(x) in [-a, 0] such that f(x) = f(-x). If g is the even extension, then

$$g(x) = \begin{cases} f(x), & x \in [0, a] \\ f(-x), & x \in [-a, 0] \end{cases}$$

4. Odd extension: If f(x) is defined in [0, a], then

$$0 \le x \le a \implies -a \le -x \le 0$$

$$\Rightarrow -x \in [-a,0]$$
.

We define f(x) in [-a, 0] such that f(x) = -f(-x). If g is the odd extension, then

$$g(x) = \begin{cases} f(x); & x \in [0, a] \\ -f(-x); & x \in [-a, 0] \end{cases}$$

☞ PERIODIC FUNCTION

A function f is said to be periodic with period α if

$$f(x + \alpha) = f(x)$$
 for all x,

where α is the least positive real number. For example, $\sin x$, $\cos x$, $\sec x$ and $\csc x$ are all periodic functions with period 2π and $\tan x$ and $\cot x$ are periodic functions with period π .

Standard results on some periodic functions

S. No.	Function	Period
1.	$\sin^n x, \cos^n x, \csc^n x$	π (if n is an even number) 2π (if n is an odd number)
2.	$\tan^n x, \cot^n x$	π
3.	$\begin{aligned} \sin x , \cos x , \tan x , \sec x \\ \csc x , \cot x \end{aligned}$	π
4.	x-[x]	1
5.	$\sin^{-1}(\sin x), \cos^{-1}(\cos x),$ $\csc^{-1}(\csc x), \sec^{-1}(\sec x)$	2π
6.	$\tan^{-1}(\tan x), \cot^{-1}(\cot x)$	π

PROPERTIES OF A PERIODIC FUNCTION

- 1. If f(x) is periodic with period p, then af(x) + b, where $a, b \in \mathbb{R}$ $(a \neq 0)$, is also periodic with period p.
- 2. If f(x) is periodic with period p, then f(ax) + b, where $a, b \in \mathbb{R}$ $(a \neq 0)$, is also periodic with period $\frac{p}{|a|}$.
- 3. Suppose f(x) has period $p = \frac{m}{n}$ $(m, n \in N \text{ and co-prime})$ and g(x) has period $q = \frac{r}{s}$ $(r, n \in N \text{ and co-prime})$ and let t be the LCM of p and q, i.e. $\frac{\text{LCM of }(m, r)}{\text{HCF of }(r, s)}$.

Then t shall be the period of f + g provided there does not exist a positive number k ($\leq t$) for which

f(x+k)+g(x+k)=f(x)+g(x), else k will be the period. The same rule is applicable for any other algebraic combination of f(x) and g(x).

The LCM of p and q always exists if p/q is a rational quantity. If p/q is irrational, then the algebraic combination of f and g is non-periodic.

Illustration 4. Find the periods (if periodic) of $f(x) = \tan \pi/2$ where $[\cdot]$ denotes the greatest integer function.

Solution:
$$f(x) = \tan \frac{\pi}{2}[x], \tan \frac{\pi}{2}[x+T]$$

 $= \tan \frac{\pi}{2}[x] \implies \tan \frac{\pi}{2}[x+T]$
 $= n\pi + \frac{\pi}{2}[x] \implies \text{Period} = 2.$

COMPOSITION OF FUNCTION

Let A, B and C be three nonempty sets. Let $f: A \to B$ and $g: B \to C$ be two mappings (or functions), then $g \circ f: A \to C$. This function is called the product or composite of f and g given by the function

 $g \circ f(x) = g[f(x)]$, for all $x \in A$

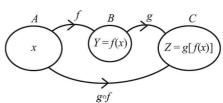


Fig. 10.12

 $g \circ f$ exists if the range of f is a subset of the domain of g. Similarly, $f \circ g$ exists if the range of g is a subset of the domain of f.

Note

- The $g \circ f$ is defined only if for all $x \in A$, f(x) is an element of the domain of g so that we can take its g-image.
- The range of f must be a subset of the domain of g in g∘f.
- (i) $(f \circ g)(x) = f[g(x)]$
 - (ii) $(f \circ f)(x) = f[f(x)]$
 - (iii) $(g \circ g)(x) = g[g(x)]$
 - (iv) $(f \pm g)(x) = f(x) \pm g(x)$

(v)
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}; g(x) \neq 0$$

Properties of a Composite Function

- 1. The composition of a function is not commutative, i.e. $f \circ g \neq g \circ f$.
- 2. The composition of a function is associative, i.e. $f \circ (g \circ h) = (f \circ g) \circ h$.

- 3. The composition of any function with the identity function is the function itself, i.e. if $f: A \rightarrow B$, then $f \circ I_A = I_B \circ f = f$
- 4. Let $f: A \to B$, $g: B \to C$ be two functions, then (a) f and g are injective $\Rightarrow g \circ f$ is injective
- (b) f and g are surjective $\Rightarrow g \circ f$ is surjective
- (c) f and g are bijective $\Rightarrow g \circ f$ is bijective
- 5. An injective mapping from a finite set to itself is bijective.

SOLVED PROBLEMS

- 1. Let $f(x) = \frac{9^x}{9^x + 3}$. Then f(x) + f(1 x) is

(c) -1

(d) none of these

Ans. (b)

- **Solution:** $f(x) = \frac{9^x}{9^x + 3}$
 - and $f(1-x) = \frac{9^{1-x}}{9^{1-x} + 2}$
 - $\Rightarrow f(1-x) = \frac{\frac{9}{9^x}}{\frac{9}{9^x} + 3} = \frac{9}{9 + 3.9^x}$
 - $f(1-x) = \frac{3}{(3+9^x)}$ (ii)

Adding (i) and (ii), we get

$$f(x) + f(1-x) = \frac{9^x}{9^x + 3} + \frac{3}{3+9^x} = 1$$

- $\Rightarrow f(x) + f(1-x) = 1$
- 2. The expression $\left[x+\sqrt{x^2-1}\right]^5 + \left[x-\sqrt{x^2-1}\right]^5$ is a

polynomial of degree

(a) 5

- (b) 6
- (c) 10
- (d) 20

Ans. (a)

Solution: $\left[x + \sqrt{x^2 - 1}\right]^5 + \left[x - \sqrt{x^2 - 1}\right]^5$ $= x^5 + {}^5C_1x^4\sqrt{x^2-1} + {}^5C_2x^3(x^2-1)$ $+ {}^{5}C_{3}x^{2}(x^{2}-1)^{3/2} + {}^{5}C_{4}x(x^{2}-1)^{2} + {}^{5}C_{5}(x^{2}-1)^{5/2}$ $+ x^{5} - {}^{5}C_{1}x^{4}\sqrt{x^{2}-1} + {}^{5}C_{2}x^{3}(x^{2}-1)$ $-{}^{5}C_{2}x^{2}(x^{2}-1)^{3/2}+{}^{5}C_{4}x(x^{2}-1)-{}^{5}C_{5}(x^{2}-1)^{5/2}$ $= 2x^5 + 2^{-5}C_2x^3(x^2-1) + 2^{-5}C_4x(x^2-1)^2$ which is a polynomial of degree 5.

3. Let $f(x) = 4\cos\sqrt{x^2 - \frac{\pi^2}{2}}$. Then

(a) the domain of f is $\left| \frac{\pi}{3}, +\infty \right|$

(b) the range of f is [-1,1]

- (c) the domain of $f\left(-\infty, -\frac{\pi}{3}\right] \cup \left[\frac{\pi}{3}, +\infty\right)$ (d) none of these

Ans. (c)

Solution: Since $f(x) = 4\cos\sqrt{x^2 - \frac{\pi^2}{2}}$

By definition, the domain of f can be defined if

$$x^2 - \frac{\pi^2}{9} \ge 0 \quad \Rightarrow \quad x^2 \ge \left(\frac{\pi}{3}\right)^2$$

$$\Rightarrow |x| \ge \frac{\pi}{3}$$

either
$$x \le -\frac{\pi}{3}$$
 or $x \ge \frac{\pi}{3}$

i.e.
$$D_f = x \in \left(-\infty, -\frac{\pi}{3}\right] \cup \left[\frac{\pi}{3}, \infty\right).$$

- 4. The domain of the function $f(x) = \frac{1}{\sqrt{x^2 3x + 2}}$ is
- (b) $(-\infty, 1) \cap (2, \infty)$
- (c) $(-\infty, 1] \cup [2, \infty)$
- (d) $(2, \infty)$

Solution: For f(x) to be defined, we must have

$$x^{2}-3x+2=(x-1)(x-2)>0$$

$$\Rightarrow x<1 \text{ or } > 2$$
Domain of $f=(-\infty, 1) \cup (2, \infty)$

- 5. The function $f(x) = \sin[\log(x + \sqrt{x^2 + 1})]$ is
- (c) neither even nor odd (d) periodic

Ans. (b)

Solution: $f(x) = \sin[\log(x + \sqrt{1 + x^2})]$

$$\Rightarrow f(-x) = \sin[\log(-x + \sqrt{1 + x^2})]$$

$$\Rightarrow f(-x) = \sin\log\left[\left(\sqrt{1+x^2} - x\right) \frac{\left(\sqrt{1+x^2} + x\right)}{\left(\sqrt{1+x^2} + x\right)}\right]$$

$$\Rightarrow f(-x) = \sin\log\left[\frac{1}{(x+\sqrt{1+x^2})}\right]$$