

SETH M.R. JAIPURIA SCHOOLS BANARAS PARAO CAMPUS

SUBJECT - MATHEMATICS

CLASS - X

1. ARITHMETIC PROGRESSION

The *n*th term a_n of the AP with first term *a* and common difference *d* is given by

 $a_n = a + (n-1)d$

2. NTH TERM FROM THE END OF AN AP

Let the last term of an AP be '*l* ' and the common difference of an AP is 'd' then the nth term from the end of an AP is given by

$$l_n = l - (n-1)d$$

3. SUM OF FIRST TERMS OF AN AP

The sum of the first *n* terms of an AP is given by

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Where: a = first term, d = common difference and n = number of terms. Also, it can be written as

$$S_n = \frac{n}{2}[a + a_n]$$

where $a_n =$ nth terms or

$$S_n = \frac{n}{2}[a+l]$$

where l = last term

Sum of first *n* positive integers is given by $S_n = \frac{n(n+1)}{2}$

4. ARITHMETIC MEAN

If **a**, **b** and **c** are in AP, then '*b* ' is known as arithmetic mean between '*a* ' and '*c* ' $b = \frac{a+c}{2}$ i.e. AM between '*a* ' and '*c* ' is $\frac{a+c}{2}$.

5. POINTS TO REMEMBER

The distance of a point from the *y*-axis is called its *x*-coordinate, or abscissa. The distance of a point from the *x*-axis is called its *y*-coordinate, or ordinate. The coordinates of a point on the *x*-axis are of the form (x, 0). The coordinates of a point on the *y*-axis are of the form (0, y).

6. DISTANCE FORMULA

The distance between any two points $A(x_1, y_1)$ and $B(x_2, y_2)$ is given by

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

or $AB = \sqrt{(\text{difference of abscissae})^2 + (\text{difference of ordinates})^2}$

5. DISTANCE OF A POINT FROM ORIGIN

The distance of a point P(x, y) from origin O is given by $OP = \sqrt{x^2 + y^2}$

6. SECTION FORMULA

The coordinates of the point P(*x*, *y*) which divides the line segment joining the points A(*x*₁, *y*₁) and B(*x*₂, *y*₂), internally, in the ratio $m_1: m_2$ are $\left(\frac{m_1X_2+m_2X_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2}\right)$ This is known as the section formula.

7. MID-POINT FORMULA

The coordinates of the point P(*x*, *y*) which is the midpoint of the line segment joining the points A(*x*₁, *y*₁) and B(*x*₂, *y*₂), are $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

8. CIRCLE

a) The collection of all the points in a plane, which are at a fixed distance from a fixed point in the plane, is called a circle.

b) The fixed point is called the centre of the circle and the fixed distance is called the radius of the circle. In the below figure, *O* is the centre and the length *OP* is the radius of the circle.

10. SECANT TO A CIRCLE

A secant to a circle is a line that intersects the circle at exactly two points.

11. TANGENT TO A CIRCLE

A tangent to a circle is a line that intersects the circle at only one point.

- > The tangent to a circle is perpendicular to the radius through the point of contact.
- > The lengths of tangents drawn from an external point to a circle are equal.
- The centre lies on the bisector of the angle between the two tangents.
- If a line in the plane of a circle is perpendicular to the radius at its endpoint on the circle, then the line is tangent to the circle.

12. PERIMETER AND AREA OF A CIRCLE

Perimeter/circumference of a circle

 $P = \pi \times \text{diameter}$ $P = \pi \times 2r$ (where *r* is the radius of the circle) $p = 2\pi r$

Area of a circle = πr^2 , where $\pi = \frac{22}{7}$

13. AREAS OF SECTOR AND SEGMENT OF A CIRCLE

Area of the sector of angle $\theta = \frac{\theta}{360^{\circ}} \times \pi r^2$, where *r* is the radius of the circle and θ the angle of the sector in degrees

length of an arc of a sector of angle $\theta = \frac{\theta}{360^{\circ}} \times 2\pi r$, where *r* is the radius of the circle and θ the angle of the sector in degrees

Area of the segment APB = Area of the sector OAPB – Area of \triangle OAB

$$= \frac{\theta}{360^0} \times \pi r^2 - \text{ area of } \Delta \text{OAB}$$

Area of the major sector $OAQB = \pi r^2$ – Area of the minor sector OAPB Area of major segment $AQB = \pi r^2$ – Area of the minor segment APB

Area of segment of a circle = Area of the corresponding sector - Area of the corresponding triangle

S. No.	Name of the solid	Figure	Lateral/Curved surface area	Total surface area	Volume
1.	Cuboid	h	2h(l+b)	2(lb+bh+hl)	lbh
2.	Cube		4 <i>a</i> ²	6a ²	a ³
4.	Regular circular Cylinder	Cylinders Bases Height Axis	2πrh	$2\pi r(r+h)$	$\pi r^2 h$
6.	Right circular cone		πrl	$\pi r(l+r)$	$\frac{1}{3}\pi r^2h$
7.	Sphere		$4\pi r^2$	$4\pi r^2$	$\frac{4}{3}\pi r^3$
8.	Hemisphere		$2\pi r^2$	$3\pi r^2$	$\frac{2}{3}\pi r^3$