<u>CLASS X : CHAPTER - 15</u> <u>PROBABILITY</u>

IMPORTANT FORMULAS & CONCEPTS

PROBABILITY

Experimental or empirical probability P(E) of an event E is

 $P(E) = \frac{\text{Number of trials in which the event happened}}{\text{Total number of trials}}$

The theoretical probability (also called classical probability) of an event A, written as P(A), is defined as

 $P(A) = \frac{\text{Number of outcomes favourable to A}}{\text{Number of all possible outcomes of the experiment}}$

Two or more events of an experiment, where occurrence of an event prevents occurrences of all other events, are called **Mutually Exclusive Events**.

COMPLIMENTARY EVENTS AND PROBABILITY

We denote the event 'not E' by E . This is called the **complement** event of event E.

So, P(E) + P(not E) = 1

i.e., $P(E) + P(\overline{E}) = 1$, which gives us $P(\overline{E}) = 1 - P(E)$.

In general, it is true that for an event E, $P(\overline{E}) = 1 - P(E)$

- The probability of an event which is impossible to occur is 0. Such an event is called an **impossible event**.
- The probability of an event which is sure (or certain) to occur is 1. Such an event is called a **sure** event or a certain event.
- The probability of an event E is a number P(E) such that $0 \le P(E) \le 1$
- An event having only one outcome is called an elementary event. The sum of the probabilities of all the elementary events of an experiment is 1.

DECK OF CARDS AND PROBABILITY

A deck of playing cards consists of 52 cards which are divided into 4 suits of 13 cards each. They are black spades (\bigstar) red hearts (\heartsuit), red diamonds (\blacklozenge) and black clubs (\bigstar).

The cards in each suit are Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3 and 2. Kings, Queens and Jacks are called face cards.

Suit	Ace	2	3	4	5	6	7	8	9	10	Jack	Queen	King
Clubs	÷.	² .↓ .↓ :	* * * * :	24 4 4 4;	24 4 + + +;	\$* * * * * *;	2	*** *** ***		**** ****	1	° 🔒	× 2
Diamonds	٠.	* *	* • • • :	* * * *:	20 0 0 0 02	\$ ◆ ◆ ◆ ◆ ◆ ◆;	1				:	2	×
Hearts	٠,	2 V • 2		** * • •:		\$₩ ₩ ₩ ₩ ▲ ▲;	2				5,	2.	8
Spades	۴.	² . • :	2 .	24 4 4 4;	24 4 4 4 47	** * * * * *;					1	2	* 2

Example set of 52 poker playing cards

Equally likely events : Two or more events are said to be equally likely if each one of them has an equal chance of occurrence.

Mutually Exclusive events : Two or more events are mutually exclusive if the occurrence of each event prevents the every other event.

Complementary events : Consider an event has few outcomes. Event of all other outcomes in the sample survey which are not in the favourable event is called Complementary event.

Exhaustive events : All the events are exhaustive events if their union is the sample space.

Sure events : The sample space of a random experiment is called sure or certain event as any one of its elements will surely occur in any trail of the experiment.

Impossible event : An event which will occur on any account is called an impossible event.

MCQ WORKSHEET-I CLASS X: CHAPTER - 15 PROBABILITY

- **1.** There are 6 marbles in a box with number 1 to6 marked on each of them . What is the probability of drawing a marble with number 2 ?
 - (a) $\frac{1}{6}$ (b) $\frac{1}{5}$ (c) $\frac{1}{3}$ (d) 1
- 2. A coin is flipped to decide which team starts the game . What is the probability of your team will start ?

(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{2}$ (c) 1 (d) 0

3. A die is thrown once . What will be the probability of getting a prime number ?

(a)
$$\frac{1}{6}$$
 (b) $\frac{1}{2}$ (c) 1 (d) 0

Cards are marked with numbers 1 to 25 are placed in the box and mixed thoroughly. One card is drawn at random from the box. Answer the following questions (Q4-Q13)

4.	What is the probability of getting a number 5?								
	(a) 1	(b) 0	(c) $\frac{1}{25}$	(d) $\frac{1}{5}$					
5.	5. What is the probability of getting a number less than 11?								
	(a) 1	(b) 0	(c) $\frac{1}{5}$	(d) $\frac{2}{5}$					
6.	6. What is the probability of getting a number greater than 25?								
	(a) 1	(b) 0	(c) $\frac{1}{5}$	(d) $\frac{2}{5}$					
7.	7. What is the probability of getting a multiple of 5?								
	(a) 1	(b) 0	(c) $\frac{1}{25}$	(d) $\frac{1}{5}$					
8. What is the probability of getting an even number?									
	(a) 1	(b) 0	(c) $\frac{12}{25}$	(d) $\frac{13}{25}$					
9. What is the probability of getting an odd number?									
	(a) 1	(b) 0	(c) $\frac{12}{25}$	(d) $\frac{13}{25}$					
10. What is the probability of getting a prime number?									
	(a) $\frac{8}{25}$	(b) $\frac{9}{25}$	(c) $\frac{12}{25}$	(d) $\frac{13}{25}$					

11. What is the probability of getting a number divisible by 3?

(a)
$$\frac{8}{25}$$
 (b) $\frac{9}{25}$ (c) $\frac{12}{25}$ (d) $\frac{13}{25}$

12. What is the probability of getting a number divisible by 4?

(a)
$$\frac{8}{25}$$
 (b) $\frac{9}{25}$ (c) $\frac{6}{25}$ (d) $\frac{3}{25}$

13. What is the probability of getting a number divisible by 7?

(a)
$$\frac{8}{25}$$
 (b) $\frac{9}{25}$ (c) $\frac{6}{25}$ (d) $\frac{3}{25}$

14. A bag has 4 red balls and 2 yellow balls. A ball is drawn from the bag without looking into the bag. What is probability of getting a red ball?

(a)
$$\frac{1}{6}$$
 (b) $\frac{2}{3}$ (c) $\frac{1}{3}$ (d) 1

15. A bag has 4 red balls and 2 yellow balls. A ball is drawn from the bag without looking into the bag. What is probability of getting a yellow ball?

(a)
$$\frac{1}{6}$$
 (b) $\frac{2}{3}$ (c) $\frac{1}{3}$ (d) 1